Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass

Abstract Second-generation bioethanol production using lignocellulosic biomass as feedstock requires a highly efficient multistress-tolerant yeast. This study aimed to develop a robust yeast strain of P. kudriavzevii via the adaptive laboratory evolution (ALE) technique. The parental strain of P. ku...

Full description

Bibliographic Details
Main Authors: Sureeporn Dolpatcha, Huynh Xuan Phong, Sudarat Thanonkeo, Preekamol Klanrit, Mamoru Yamada, Pornthap Thanonkeo
Format: Article
Language:English
Published: Nature Portfolio 2023-11-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-48408-7
_version_ 1797415312703881216
author Sureeporn Dolpatcha
Huynh Xuan Phong
Sudarat Thanonkeo
Preekamol Klanrit
Mamoru Yamada
Pornthap Thanonkeo
author_facet Sureeporn Dolpatcha
Huynh Xuan Phong
Sudarat Thanonkeo
Preekamol Klanrit
Mamoru Yamada
Pornthap Thanonkeo
author_sort Sureeporn Dolpatcha
collection DOAJ
description Abstract Second-generation bioethanol production using lignocellulosic biomass as feedstock requires a highly efficient multistress-tolerant yeast. This study aimed to develop a robust yeast strain of P. kudriavzevii via the adaptive laboratory evolution (ALE) technique. The parental strain of P. kudriavzevii was subjected to repetitive long-term cultivation in medium supplemented with a gradually increasing concentration of acetic acid, the major weak acid liberated during the lignocellulosic pretreatment process. Three evolved P. kudriavzevii strains, namely, PkAC-7, PkAC-8, and PkAC-9, obtained in this study exhibited significantly higher resistance toward multiple stressors, including heat, ethanol, osmotic stress, acetic acid, formic acid, furfural, 5-(hydroxymethyl) furfural (5-HMF), and vanillin. The fermentation efficiency of the evolved strains was also improved, yielding a higher ethanol concentration, productivity, and yield than the parental strain, using undetoxified sugarcane bagasse hydrolysate as feedstock. These findings provide evidence that ALE is a practical approach for increasing the multistress tolerance of P. kudriavzevii for stable and efficient second-generation bioethanol production from lignocellulosic biomass.
first_indexed 2024-03-09T05:46:54Z
format Article
id doaj.art-32a07a0d17ee492bac1e29b5e0d0aec9
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-03-09T05:46:54Z
publishDate 2023-11-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-32a07a0d17ee492bac1e29b5e0d0aec92023-12-03T12:20:24ZengNature PortfolioScientific Reports2045-23222023-11-0113111510.1038/s41598-023-48408-7Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomassSureeporn Dolpatcha0Huynh Xuan Phong1Sudarat Thanonkeo2Preekamol Klanrit3Mamoru Yamada4Pornthap Thanonkeo5Department of Biotechnology, Faculty of Technology, Khon Kaen UniversityDepartment of Microbial Biotechnology, Institute of Food and Biotechnology, Can Tho UniversityWalai Rukhavej Botanical Research Institute, Mahasarakham UniversityDepartment of Biotechnology, Faculty of Technology, Khon Kaen UniversityDepartment of Biological Chemistry, Faculty of Agriculture, Yamaguchi UniversityDepartment of Biotechnology, Faculty of Technology, Khon Kaen UniversityAbstract Second-generation bioethanol production using lignocellulosic biomass as feedstock requires a highly efficient multistress-tolerant yeast. This study aimed to develop a robust yeast strain of P. kudriavzevii via the adaptive laboratory evolution (ALE) technique. The parental strain of P. kudriavzevii was subjected to repetitive long-term cultivation in medium supplemented with a gradually increasing concentration of acetic acid, the major weak acid liberated during the lignocellulosic pretreatment process. Three evolved P. kudriavzevii strains, namely, PkAC-7, PkAC-8, and PkAC-9, obtained in this study exhibited significantly higher resistance toward multiple stressors, including heat, ethanol, osmotic stress, acetic acid, formic acid, furfural, 5-(hydroxymethyl) furfural (5-HMF), and vanillin. The fermentation efficiency of the evolved strains was also improved, yielding a higher ethanol concentration, productivity, and yield than the parental strain, using undetoxified sugarcane bagasse hydrolysate as feedstock. These findings provide evidence that ALE is a practical approach for increasing the multistress tolerance of P. kudriavzevii for stable and efficient second-generation bioethanol production from lignocellulosic biomass.https://doi.org/10.1038/s41598-023-48408-7
spellingShingle Sureeporn Dolpatcha
Huynh Xuan Phong
Sudarat Thanonkeo
Preekamol Klanrit
Mamoru Yamada
Pornthap Thanonkeo
Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass
Scientific Reports
title Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass
title_full Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass
title_fullStr Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass
title_full_unstemmed Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass
title_short Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass
title_sort adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of pichia kudriavzevii from lignocellulosic biomass
url https://doi.org/10.1038/s41598-023-48408-7
work_keys_str_mv AT sureeporndolpatcha adaptivelaboratoryevolutionunderaceticacidstressenhancesthemultistresstoleranceandethanolproductionefficiencyofpichiakudriavzeviifromlignocellulosicbiomass
AT huynhxuanphong adaptivelaboratoryevolutionunderaceticacidstressenhancesthemultistresstoleranceandethanolproductionefficiencyofpichiakudriavzeviifromlignocellulosicbiomass
AT sudaratthanonkeo adaptivelaboratoryevolutionunderaceticacidstressenhancesthemultistresstoleranceandethanolproductionefficiencyofpichiakudriavzeviifromlignocellulosicbiomass
AT preekamolklanrit adaptivelaboratoryevolutionunderaceticacidstressenhancesthemultistresstoleranceandethanolproductionefficiencyofpichiakudriavzeviifromlignocellulosicbiomass
AT mamoruyamada adaptivelaboratoryevolutionunderaceticacidstressenhancesthemultistresstoleranceandethanolproductionefficiencyofpichiakudriavzeviifromlignocellulosicbiomass
AT pornthapthanonkeo adaptivelaboratoryevolutionunderaceticacidstressenhancesthemultistresstoleranceandethanolproductionefficiencyofpichiakudriavzeviifromlignocellulosicbiomass