Deformations and Extensions of Modified <i>λ</i>-Differential 3-Lie Algebras

In this paper, we propose the representation and cohomology of modified <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>-differential 3-Lie a...

Full description

Bibliographic Details
Main Authors: Wen Teng, Hui Zhang
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/18/3853
_version_ 1797578940668182528
author Wen Teng
Hui Zhang
author_facet Wen Teng
Hui Zhang
author_sort Wen Teng
collection DOAJ
description In this paper, we propose the representation and cohomology of modified <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>-differential 3-Lie algebras. As their applications, the linear deformations, abelian extensions and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>T</mi><mo>∗</mo></msup></semantics></math></inline-formula>-extensions of modified <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>-differential 3-Lie algebras are also studied.
first_indexed 2024-03-10T22:29:45Z
format Article
id doaj.art-32a9ba4a52a849549d3bfb96817e46a5
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T22:29:45Z
publishDate 2023-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-32a9ba4a52a849549d3bfb96817e46a52023-11-19T11:48:31ZengMDPI AGMathematics2227-73902023-09-011118385310.3390/math11183853Deformations and Extensions of Modified <i>λ</i>-Differential 3-Lie AlgebrasWen Teng0Hui Zhang1School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, ChinaSchool of Information, Guizhou University of Finance and Economics, Guiyang 550025, ChinaIn this paper, we propose the representation and cohomology of modified <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>-differential 3-Lie algebras. As their applications, the linear deformations, abelian extensions and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>T</mi><mo>∗</mo></msup></semantics></math></inline-formula>-extensions of modified <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>-differential 3-Lie algebras are also studied.https://www.mdpi.com/2227-7390/11/18/38533-Lie algebrasmodified λ-differential operatorrepresentationcohomologylinear deformationabelian extension
spellingShingle Wen Teng
Hui Zhang
Deformations and Extensions of Modified <i>λ</i>-Differential 3-Lie Algebras
Mathematics
3-Lie algebras
modified λ-differential operator
representation
cohomology
linear deformation
abelian extension
title Deformations and Extensions of Modified <i>λ</i>-Differential 3-Lie Algebras
title_full Deformations and Extensions of Modified <i>λ</i>-Differential 3-Lie Algebras
title_fullStr Deformations and Extensions of Modified <i>λ</i>-Differential 3-Lie Algebras
title_full_unstemmed Deformations and Extensions of Modified <i>λ</i>-Differential 3-Lie Algebras
title_short Deformations and Extensions of Modified <i>λ</i>-Differential 3-Lie Algebras
title_sort deformations and extensions of modified i λ i differential 3 lie algebras
topic 3-Lie algebras
modified λ-differential operator
representation
cohomology
linear deformation
abelian extension
url https://www.mdpi.com/2227-7390/11/18/3853
work_keys_str_mv AT wenteng deformationsandextensionsofmodifiedilidifferential3liealgebras
AT huizhang deformationsandextensionsofmodifiedilidifferential3liealgebras