Oscillation of Nonlinear Delay Differential Equation with Non-Monotone Arguments

<p>Consider the first-order nonlinear retarded differential equation</p> <p>$$</p> <p>x^{\prime }(t)+p(t)f\left( x\left( \tau (t)\right) \right) =0, t\geq t_{0}</p> <p>$$</p> where $p(t)$ and $\tau (t)$ are function of positive real numbers such that $...

Full description

Bibliographic Details
Main Authors: Özkan Öcalan, Nurten Kilic, Sermin Sahin, Umut Mutlu Ozkan
Format: Article
Language:English
Published: Etamaths Publishing 2017-07-01
Series:International Journal of Analysis and Applications
Online Access:http://etamaths.com/index.php/ijaa/article/view/1292
_version_ 1819062169331826688
author Özkan Öcalan
Nurten Kilic
Sermin Sahin
Umut Mutlu Ozkan
author_facet Özkan Öcalan
Nurten Kilic
Sermin Sahin
Umut Mutlu Ozkan
author_sort Özkan Öcalan
collection DOAJ
description <p>Consider the first-order nonlinear retarded differential equation</p> <p>$$</p> <p>x^{\prime }(t)+p(t)f\left( x\left( \tau (t)\right) \right) =0, t\geq t_{0}</p> <p>$$</p> where $p(t)$ and $\tau (t)$ are function of positive real numbers such that $%\tau (t)\leq t$ for$\ t\geq t_{0},\ $and$\ \lim_{t\rightarrow \infty }\tau(t)=\infty $. Under the assumption that the retarded argument is non-monotone, new oscillation results are given. An example illustrating the result is also given.<br />
first_indexed 2024-12-21T14:54:30Z
format Article
id doaj.art-32bc8a2d21254c0daad57a8142c6bde9
institution Directory Open Access Journal
issn 2291-8639
language English
last_indexed 2024-12-21T14:54:30Z
publishDate 2017-07-01
publisher Etamaths Publishing
record_format Article
series International Journal of Analysis and Applications
spelling doaj.art-32bc8a2d21254c0daad57a8142c6bde92022-12-21T18:59:47ZengEtamaths PublishingInternational Journal of Analysis and Applications2291-86392017-07-01142147154248Oscillation of Nonlinear Delay Differential Equation with Non-Monotone ArgumentsÖzkan Öcalan0Nurten KilicSermin SahinUmut Mutlu OzkanAkdeniz University<p>Consider the first-order nonlinear retarded differential equation</p> <p>$$</p> <p>x^{\prime }(t)+p(t)f\left( x\left( \tau (t)\right) \right) =0, t\geq t_{0}</p> <p>$$</p> where $p(t)$ and $\tau (t)$ are function of positive real numbers such that $%\tau (t)\leq t$ for$\ t\geq t_{0},\ $and$\ \lim_{t\rightarrow \infty }\tau(t)=\infty $. Under the assumption that the retarded argument is non-monotone, new oscillation results are given. An example illustrating the result is also given.<br />http://etamaths.com/index.php/ijaa/article/view/1292
spellingShingle Özkan Öcalan
Nurten Kilic
Sermin Sahin
Umut Mutlu Ozkan
Oscillation of Nonlinear Delay Differential Equation with Non-Monotone Arguments
International Journal of Analysis and Applications
title Oscillation of Nonlinear Delay Differential Equation with Non-Monotone Arguments
title_full Oscillation of Nonlinear Delay Differential Equation with Non-Monotone Arguments
title_fullStr Oscillation of Nonlinear Delay Differential Equation with Non-Monotone Arguments
title_full_unstemmed Oscillation of Nonlinear Delay Differential Equation with Non-Monotone Arguments
title_short Oscillation of Nonlinear Delay Differential Equation with Non-Monotone Arguments
title_sort oscillation of nonlinear delay differential equation with non monotone arguments
url http://etamaths.com/index.php/ijaa/article/view/1292
work_keys_str_mv AT ozkanocalan oscillationofnonlineardelaydifferentialequationwithnonmonotonearguments
AT nurtenkilic oscillationofnonlineardelaydifferentialequationwithnonmonotonearguments
AT serminsahin oscillationofnonlineardelaydifferentialequationwithnonmonotonearguments
AT umutmutluozkan oscillationofnonlineardelaydifferentialequationwithnonmonotonearguments