Otto Engine for the <i>q</i>-State Clock Model

This present work explores the performance of a thermal–magnetic engine of Otto type, considering as a working substance an effective interacting spin model corresponding to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><sema...

Full description

Bibliographic Details
Main Authors: Michel Angelo Aguilera, Francisco José Peña, Oscar Andrés Negrete, Patricio Vargas
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/2/268
_version_ 1797480528828432384
author Michel Angelo Aguilera
Francisco José Peña
Oscar Andrés Negrete
Patricio Vargas
author_facet Michel Angelo Aguilera
Francisco José Peña
Oscar Andrés Negrete
Patricio Vargas
author_sort Michel Angelo Aguilera
collection DOAJ
description This present work explores the performance of a thermal–magnetic engine of Otto type, considering as a working substance an effective interacting spin model corresponding to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>−</mo></mrow></semantics></math></inline-formula> state clock model. We obtain all the thermodynamic quantities for the <i>q</i> = 2, 4, 6, and 8 cases in a small lattice size (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>×</mo><mn>3</mn></mrow></semantics></math></inline-formula> with free boundary conditions) by using the exact partition function calculated from the energies of all the accessible microstates of the system. The extension to bigger lattices was performed using the mean-field approximation. Our results indicate that the total work extraction of the cycle is highest for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> case, while the performance for the Ising model (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>) is the lowest of all cases studied. These results are strongly linked with the phase diagram of the working substance and the location of the cycle in the different magnetic phases present, where we find that the transition from a ferromagnetic to a paramagnetic phase extracts more work than one of the Berezinskii–Kosterlitz–Thouless to paramagnetic type. Additionally, as the size of the lattice increases, the extraction work is lower than smaller lattices for all values of <i>q</i> presented in this study.
first_indexed 2024-03-09T22:01:20Z
format Article
id doaj.art-32bceb2885634a7d887f1ba6498ab9e0
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-09T22:01:20Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-32bceb2885634a7d887f1ba6498ab9e02023-11-23T19:48:40ZengMDPI AGEntropy1099-43002022-02-0124226810.3390/e24020268Otto Engine for the <i>q</i>-State Clock ModelMichel Angelo Aguilera0Francisco José Peña1Oscar Andrés Negrete2Patricio Vargas3Department of Physics, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, ChileDepartment of Physics, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, ChileDepartment of Physics, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, ChileDepartment of Physics, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, ChileThis present work explores the performance of a thermal–magnetic engine of Otto type, considering as a working substance an effective interacting spin model corresponding to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>−</mo></mrow></semantics></math></inline-formula> state clock model. We obtain all the thermodynamic quantities for the <i>q</i> = 2, 4, 6, and 8 cases in a small lattice size (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>×</mo><mn>3</mn></mrow></semantics></math></inline-formula> with free boundary conditions) by using the exact partition function calculated from the energies of all the accessible microstates of the system. The extension to bigger lattices was performed using the mean-field approximation. Our results indicate that the total work extraction of the cycle is highest for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula> case, while the performance for the Ising model (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>) is the lowest of all cases studied. These results are strongly linked with the phase diagram of the working substance and the location of the cycle in the different magnetic phases present, where we find that the transition from a ferromagnetic to a paramagnetic phase extracts more work than one of the Berezinskii–Kosterlitz–Thouless to paramagnetic type. Additionally, as the size of the lattice increases, the extraction work is lower than smaller lattices for all values of <i>q</i> presented in this study.https://www.mdpi.com/1099-4300/24/2/268<i>q</i>-state clock modelentropyBerezinskii–Kosterlitz–Thouless transitionOtto enginemean-field approximation
spellingShingle Michel Angelo Aguilera
Francisco José Peña
Oscar Andrés Negrete
Patricio Vargas
Otto Engine for the <i>q</i>-State Clock Model
Entropy
<i>q</i>-state clock model
entropy
Berezinskii–Kosterlitz–Thouless transition
Otto engine
mean-field approximation
title Otto Engine for the <i>q</i>-State Clock Model
title_full Otto Engine for the <i>q</i>-State Clock Model
title_fullStr Otto Engine for the <i>q</i>-State Clock Model
title_full_unstemmed Otto Engine for the <i>q</i>-State Clock Model
title_short Otto Engine for the <i>q</i>-State Clock Model
title_sort otto engine for the i q i state clock model
topic <i>q</i>-state clock model
entropy
Berezinskii–Kosterlitz–Thouless transition
Otto engine
mean-field approximation
url https://www.mdpi.com/1099-4300/24/2/268
work_keys_str_mv AT michelangeloaguilera ottoenginefortheiqistateclockmodel
AT franciscojosepena ottoenginefortheiqistateclockmodel
AT oscarandresnegrete ottoenginefortheiqistateclockmodel
AT patriciovargas ottoenginefortheiqistateclockmodel