Abordagem Bayesiana da curva de lactação de cabras Saanen de primeira e segunda ordem de parto Bayesian approach in the lactation curve of Saanen goats from first and second calving orders

O objetivo deste trabalho foi utilizar o método Bayesiano no ajuste do modelo de Wood a dados de produção de leite de cabras da raça Saanen. Dois grupos de animais da primeira e segunda lactação foram considerados. Amostras das distribuições marginais a posteriori dos parâmetros do modelo de Wood e...

Full description

Bibliographic Details
Main Authors: Fabyano Fonseca e Silva, Joel Augusto Muniz, Luiz Henrique de Aquino, Thelma Sáfadi
Format: Article
Language:English
Published: Embrapa Informação Tecnológica 2005-01-01
Series:Pesquisa Agropecuária Brasileira
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2005000100004
Description
Summary:O objetivo deste trabalho foi utilizar o método Bayesiano no ajuste do modelo de Wood a dados de produção de leite de cabras da raça Saanen. Dois grupos de animais da primeira e segunda lactação foram considerados. Amostras das distribuições marginais a posteriori dos parâmetros do modelo de Wood e das funções de produção derivadas desses parâmetros - pico de produção, tempo do pico de produção, persistência e produção total de leite - foram obtidas pelo algoritmo Gibbs Sampler. As inferências foram feitas em cada população e os resultados mostraram diferenças na taxa de decréscimo da produção após o pico e na persistência, indicando maior produção nos animais de segunda lactação. Realizou-se um estudo de simulação de dados para avaliar o método Bayesiano sob diferentes estruturas de matrizes de covariâncias dos parâmetros. Os resultados desse estudo indicam que o método é eficiente no estudo das curvas de lactação quando a matriz de covariância apresenta alta correlação dos parâmetros.<br>The objective of this work was to use the Bayesian method in the fitting of the Wood&acute;s model for milk production of Saanen goats. Two groups of animals from first and second lactation were considered in the analysis. The posterior marginal distributions for each parameter and production functions, peak milk yield, time of peak yield, persistency and total milk production, were obtained via Gibbs Sampler algorithm. The inference was done for each population. The results showed differences in the slope of the curve after the peak and in persistency, indicating highest production for the second lactation. The data were simulated for evaluating Bayesian method under several covariance matrices structures. The simulation results indicate the efficiency of this method for lactation curves studies when the covariance matrices show high correlation for parameters.
ISSN:0100-204X
1678-3921