Food availability positively affects the survival and somatic maintenance of hibernating garden dormice (Eliomys quercinus)
Abstract Background Torpor is an energy saving strategy achieved by substantial reductions of metabolic rate and body temperature that enables animals to survive periods of low resource availability. During hibernation (multiday torpor), the frequency of periodic rewarming—characterised by high leve...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2023-05-01
|
Series: | Frontiers in Zoology |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12983-023-00498-9 |
_version_ | 1797817828530716672 |
---|---|
author | Sylvain Giroud Marie-Therese Ragger Amélie Baille Franz Hoelzl Steve Smith Julia Nowack Thomas Ruf |
author_facet | Sylvain Giroud Marie-Therese Ragger Amélie Baille Franz Hoelzl Steve Smith Julia Nowack Thomas Ruf |
author_sort | Sylvain Giroud |
collection | DOAJ |
description | Abstract Background Torpor is an energy saving strategy achieved by substantial reductions of metabolic rate and body temperature that enables animals to survive periods of low resource availability. During hibernation (multiday torpor), the frequency of periodic rewarming—characterised by high levels of oxidative stress—is associated with shortening of telomeres, a marker of somatic maintenance. Objectives In this study, we determined the impact of ambient temperature on feeding behaviour and telomere dynamics in hibernating garden dormice (Eliomys quercinus) over winter. This obligate hibernator prepares for hibernation by accumulating fat stores but can also feed during hibernation. Methodology Food intake, torpor pattern, changes in telomere length, and body mass change were assessed in animals housed at experimentally controlled temperatures of either 14 °C (i.e., a mild winter) or 3 °C (i.e., a cold winter) over 6 months. Results When hibernating at 14 °C, dormice experienced 1.7-fold more frequent and 2.4-fold longer inter-bout euthermia, and spent significantly less time torpid, compared to animals hibernating at 3 °C. Higher food intake enabled individuals to compensate for increased energetic costs when hibernating at milder temperatures (14 °C vs. 3 °C), to buffer body mass loss and thus increase winter survival. Interestingly, we observed a significant increase of telomere length over the entire hibernation period, irrespective of temperature treatment. Conclusion We conclude that higher temperatures during winter, if associated with sufficient food availability, can have a positive effect on the individual’s energy balance and somatic maintenance. These results suggest that winter food availability might be a crucial determinant for the survival of the garden dormouse in the context of ever-increasing environmental temperatures. |
first_indexed | 2024-03-13T08:59:11Z |
format | Article |
id | doaj.art-32c4d1bdf8c54558ae9644e8126f95e5 |
institution | Directory Open Access Journal |
issn | 1742-9994 |
language | English |
last_indexed | 2024-03-13T08:59:11Z |
publishDate | 2023-05-01 |
publisher | BMC |
record_format | Article |
series | Frontiers in Zoology |
spelling | doaj.art-32c4d1bdf8c54558ae9644e8126f95e52023-05-28T11:23:31ZengBMCFrontiers in Zoology1742-99942023-05-0120111110.1186/s12983-023-00498-9Food availability positively affects the survival and somatic maintenance of hibernating garden dormice (Eliomys quercinus)Sylvain Giroud0Marie-Therese Ragger1Amélie Baille2Franz Hoelzl3Steve Smith4Julia Nowack5Thomas Ruf6Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary MedicineResearch Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary MedicineResearch Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary MedicineKonrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary MedicineKonrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary MedicineResearch Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary MedicineResearch Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary MedicineAbstract Background Torpor is an energy saving strategy achieved by substantial reductions of metabolic rate and body temperature that enables animals to survive periods of low resource availability. During hibernation (multiday torpor), the frequency of periodic rewarming—characterised by high levels of oxidative stress—is associated with shortening of telomeres, a marker of somatic maintenance. Objectives In this study, we determined the impact of ambient temperature on feeding behaviour and telomere dynamics in hibernating garden dormice (Eliomys quercinus) over winter. This obligate hibernator prepares for hibernation by accumulating fat stores but can also feed during hibernation. Methodology Food intake, torpor pattern, changes in telomere length, and body mass change were assessed in animals housed at experimentally controlled temperatures of either 14 °C (i.e., a mild winter) or 3 °C (i.e., a cold winter) over 6 months. Results When hibernating at 14 °C, dormice experienced 1.7-fold more frequent and 2.4-fold longer inter-bout euthermia, and spent significantly less time torpid, compared to animals hibernating at 3 °C. Higher food intake enabled individuals to compensate for increased energetic costs when hibernating at milder temperatures (14 °C vs. 3 °C), to buffer body mass loss and thus increase winter survival. Interestingly, we observed a significant increase of telomere length over the entire hibernation period, irrespective of temperature treatment. Conclusion We conclude that higher temperatures during winter, if associated with sufficient food availability, can have a positive effect on the individual’s energy balance and somatic maintenance. These results suggest that winter food availability might be a crucial determinant for the survival of the garden dormouse in the context of ever-increasing environmental temperatures.https://doi.org/10.1186/s12983-023-00498-9Costs of torporGarden dormiceTemperatureHibernationROSTelomerase |
spellingShingle | Sylvain Giroud Marie-Therese Ragger Amélie Baille Franz Hoelzl Steve Smith Julia Nowack Thomas Ruf Food availability positively affects the survival and somatic maintenance of hibernating garden dormice (Eliomys quercinus) Frontiers in Zoology Costs of torpor Garden dormice Temperature Hibernation ROS Telomerase |
title | Food availability positively affects the survival and somatic maintenance of hibernating garden dormice (Eliomys quercinus) |
title_full | Food availability positively affects the survival and somatic maintenance of hibernating garden dormice (Eliomys quercinus) |
title_fullStr | Food availability positively affects the survival and somatic maintenance of hibernating garden dormice (Eliomys quercinus) |
title_full_unstemmed | Food availability positively affects the survival and somatic maintenance of hibernating garden dormice (Eliomys quercinus) |
title_short | Food availability positively affects the survival and somatic maintenance of hibernating garden dormice (Eliomys quercinus) |
title_sort | food availability positively affects the survival and somatic maintenance of hibernating garden dormice eliomys quercinus |
topic | Costs of torpor Garden dormice Temperature Hibernation ROS Telomerase |
url | https://doi.org/10.1186/s12983-023-00498-9 |
work_keys_str_mv | AT sylvaingiroud foodavailabilitypositivelyaffectsthesurvivalandsomaticmaintenanceofhibernatinggardendormiceeliomysquercinus AT mariethereseragger foodavailabilitypositivelyaffectsthesurvivalandsomaticmaintenanceofhibernatinggardendormiceeliomysquercinus AT ameliebaille foodavailabilitypositivelyaffectsthesurvivalandsomaticmaintenanceofhibernatinggardendormiceeliomysquercinus AT franzhoelzl foodavailabilitypositivelyaffectsthesurvivalandsomaticmaintenanceofhibernatinggardendormiceeliomysquercinus AT stevesmith foodavailabilitypositivelyaffectsthesurvivalandsomaticmaintenanceofhibernatinggardendormiceeliomysquercinus AT julianowack foodavailabilitypositivelyaffectsthesurvivalandsomaticmaintenanceofhibernatinggardendormiceeliomysquercinus AT thomasruf foodavailabilitypositivelyaffectsthesurvivalandsomaticmaintenanceofhibernatinggardendormiceeliomysquercinus |