Ecoflex Flexible Array of Triboelectric Nanogenerators for Gait Monitoring Alarm Warning Applications

The advent of self-powered arrays of tribological nanogenerators (TENGs) that harvest mechanical energy for data collection has ushered in a promising avenue for human motion monitoring. This emerging trend is poised to shape the future landscape of biomechanical study. However, when we try to monit...

Full description

Bibliographic Details
Main Authors: Qinglan Zheng, Changjun Jia, Fengxin Sun, Mengqi Zhang, Yuzhang Wen, Zhenning Xie, Junxiao Wang, Bing Liu, Yupeng Mao, Chongle Zhao
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/12/15/3226
Description
Summary:The advent of self-powered arrays of tribological nanogenerators (TENGs) that harvest mechanical energy for data collection has ushered in a promising avenue for human motion monitoring. This emerging trend is poised to shape the future landscape of biomechanical study. However, when we try to monitor various regions of the foot across disparate environments simultaneously, it poses a number of problems, such as the lack of satisfactory waterproofing, suboptimal heat resistance, inaccurate monitoring capacity, and the inability to transmit data wirelessly. To overcome these issues, we have developed an array of sensors affixed to the insole’s surface to adeptly monitor movement gait patterns and alert users to falls using self-powered triboelectric nanogenerators (TENGs). Each sensor cell on this sensor works as an individual air gap TENG (FWF-TENG), namely flexible, waterproof, and fast response, composed of an Ecoflex single-electrode array. Each FWF-TENG boasts a fast response time of 28 ms, which is sufficient to quickly monitor pressure changes during various badminton activities. Importantly, these sensors can persistently generate electrical signals at 70%RH humidity. Data obtained from these sensors can be transmitted to an upper computer intelligent terminal wirelessly through multi-grouped FHW-ENG sensing terminals in real time to achieve human–computer interaction applications, including motion technical determinations, feedback, and fall alerts. As a result, the interconnected TENG arrays have broad potential applications, including gait rehabilitation monitoring, motion technique identification, and fall alarm applications.
ISSN:2079-9292