Occurrence of Chiral Bioactive Compounds in the Aquatic Environment: A Review

In recent decades, the presence of micropollutants in the environment has been extensively studied due to their high frequency of occurrence, persistence and possible adverse effects to exposed organisms. Concerning chiral micropollutants in the environment, enantiomers are frequently ignored and en...

Full description

Bibliographic Details
Main Authors: Cláudia Ribeiro, Ana Rita Ribeiro, Alexandra S. Maia, Maria Elizabeth Tiritan
Format: Article
Language:English
Published: MDPI AG 2017-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/9/10/215
Description
Summary:In recent decades, the presence of micropollutants in the environment has been extensively studied due to their high frequency of occurrence, persistence and possible adverse effects to exposed organisms. Concerning chiral micropollutants in the environment, enantiomers are frequently ignored and enantiomeric composition often neglected. However, enantioselective toxicity is well recognized, highlighting the need to include enantioselectivity in environmental risk assessment. Additionally, the information about enantiomeric fraction (EF) is crucial since it gives insights about: (i) environmental fate (i.e., occurrence, distribution, removal processes and (bio)degradation); (ii) illicit discharges; (iii) consumption pattern (e.g., illicit drugs, pharmaceuticals used as recreational drugs, illicit use of pesticides); and (iv) enantioselective toxicological effects. Thus, the purpose of this paper is to provide a comprehensive review about the enantioselective occurrence of chiral bioactive compounds in aquatic environmental matrices. These include pharmaceuticals, illicit drugs, pesticides, polychlorinated biphenyls (PCBs) and polycyclic musks (PCMs). Most frequently analytical methods used for separation of enantiomers were liquid chromatography and gas chromatography methodologies using both indirect (enantiomerically pure derivatizing reagents) and direct methods (chiral stationary phases). The occurrence of these chiral micropollutants in the environment is reviewed and future challenges are outlined.
ISSN:2073-8994