Fatigue performance of U-notched additively manufactured AlSi10Mg parts: The effects of chemical and thermal post-treatments

In the current study, the effects of different post-processing methods, including heat treatment (HT) and electro-chemical polishing (ECP) as well as their combination on the surface texture, porosity, microstructure, mechanical properties, and rotating bending fatigue behavior of U-notched laser po...

Full description

Bibliographic Details
Main Authors: Erfan Maleki, Sara Bagherifard, Nabeel Ahmad, Shuai Shao, Okan Unal, Mario Guagliano, Nima Shamsaei
Format: Article
Language:English
Published: Elsevier 2023-12-01
Series:Additive Manufacturing Letters
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2772369023000555
Description
Summary:In the current study, the effects of different post-processing methods, including heat treatment (HT) and electro-chemical polishing (ECP) as well as their combination on the surface texture, porosity, microstructure, mechanical properties, and rotating bending fatigue behavior of U-notched laser powder bed fused AlSi10Mg specimens were comprehensively investigated. In addition, to better understand the effects of the applied post-processing methods on the sensitivity of the notched specimen to surface and near-surface defects, finite element analysis was performed. Chemical treatment was found to be very influential on surface texture modification of the very narrow notched parts, for which the application of other treatments can be quite challenging. It was also found that the fatigue behavior of the notched specimens was more sensitive to the surface texture rather than to the near-surface defects. The hybrid treatment involving HT+ECP was the most effective for fatigue behavior improvement due to simultaneous homogenization of the microstructure, released tensile residual stresses, enhanced ductility and high surface texture modification.
ISSN:2772-3690