Face Recognition under Varying Illumination Using Green’s Functionbased Bidimensional Empirical Mode Decomposition and Gradientfaces

A novel face recognition approach under varying illumination condition based on Green’s function in tension-based bid imensional empirical mode decomposition (GiT-BEMD) and gradient faces (GBEMDGF) is present. Firstly, face image was illumination normalization by discrete cosine transform that an ap...

Full description

Bibliographic Details
Main Authors: Yang Zhi-Jun, He Xue, Xiong Wen-Yi, Nie Xiang-Fei
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:ITM Web of Conferences
Online Access:http://dx.doi.org/10.1051/itmconf/20160701015
Description
Summary:A novel face recognition approach under varying illumination condition based on Green’s function in tension-based bid imensional empirical mode decomposition (GiT-BEMD) and gradient faces (GBEMDGF) is present. Firstly, face image was illumination normalization by discrete cosine transform that an appropriate number of DCT coefficients are truncated in logarithm domain. And then, two intrinsic mode functions (IMFs) that relevant of intrinsic physical significances of face images are produced by Gi T-BEMD. At the same time, gradient faces is used to improve the high frequency component of face images and to extract illumination insensitive facial feature. The facial feature of discriminately are fused using IMFs and illumination insensitive feature. Secondly, the principal component analysis is adopted to reduce the dimension of face image. The nearest neighbourhood classifier based on cosine distance is implemented for face classification. Experimental results on Yale B database and CUM PIE face database demonstrate that the present technique is robust to varying lighting resource.
ISSN:2271-2097