Assimilative Modeling of Ionospheric Disturbances with FORMOSAT-3/COSMIC and Ground-Based GPS Measurements

The four-dimensional Global Assimilative Ionospheric Model (GAIM) is applied to a study of ionospheric disturbances. The investigation is focused on disturbance features, particularly in the altitude and latitude dimensions, at low latitudes during a geomagnetic storm on 7 August 2006, under solar m...

Full description

Bibliographic Details
Main Authors: Xiaoqing Pi, Anthony J. Mannucci, Byron A. Iijima, Brian D. Wilson, Attila Komjathy, Thomas F. Runge, Vardan Akopian
Format: Article
Language:English
Published: Springer 2009-01-01
Series:Terrestrial, Atmospheric and Oceanic Sciences
Subjects:
Online Access: http://tao.cgu.org.tw/images/attachments/v201p273.pdf
Description
Summary:The four-dimensional Global Assimilative Ionospheric Model (GAIM) is applied to a study of ionospheric disturbances. The investigation is focused on disturbance features, particularly in the altitude and latitude dimensions, at low latitudes during a geomagnetic storm on 7 August 2006, under solar minimum conditions. The modeling of storm-time ionospheric state (electron density) is conducted by assimilating an unprecedented volume of line-of-sight TEC data collected by the Global Positioning System (GPS) occultation receivers on board six FORMOSAT-3/COSMIC satellites and geodetic-quality GPS receivers at two hundred globally-distributed ground tracking stations.With a band-limited Kalman filter technique to update the ionospheric state, the assimilative modeling reveals a pronounced enhancement in the equatorial anomaly in the East Asia sector during dusk and evening hours. The disturbance characteristics, obtained by comparing with the quiet conditions prior to the storm also modeled in this study through data assimilation, include lifted F layer and reduced electron density in the equatorial region, enhanced density at the magnetically conjugate anomaly latitudes, and tilted feature of density increase towards higher altitudes at lower latitudes. The characteristics are attributed to the enhanced plasma fountain effect driven by an enhanced eastward zonal electric field. These results enable us to distinguish the storm-time electric field perturbations clearly from other sources during the storm. The possible origins of electric field perturbations are also discussed, including penetration of the magnetospheric electric field and wind dynamo disturbances.
ISSN:1017-0839
2311-7680