Pronounced Photovoltaic Response from Multi-layered MoTe2 Phototransistor with Asymmetric Contact Form
Abstract In this study, we fabricate air-stable p-type multi-layered MoTe2 phototransistor using Au as electrodes, which shows pronounced photovoltaic response in off-state with asymmetric contact form. By analyzing the spatially resolved photoresponse using scanning photocurrent microscopy, we foun...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-11-01
|
Series: | Nanoscale Research Letters |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s11671-017-2373-5 |
Summary: | Abstract In this study, we fabricate air-stable p-type multi-layered MoTe2 phototransistor using Au as electrodes, which shows pronounced photovoltaic response in off-state with asymmetric contact form. By analyzing the spatially resolved photoresponse using scanning photocurrent microscopy, we found that the potential steps are formed in the vicinity of the electrodes/MoTe2 interface due to the doping of the MoTe2 by the metal contacts. The potential step dominates the separation of photoexcited electron-hole pairs in short-circuit condition or with small V sd biased. Based on these findings, we infer that the asymmetric contact cross-section between MoTe2-source and MoTe2-drain electrodes is the reason to form non-zero net current and photovoltaic response. Furthermore, MoTe2 phototransistor shows a faster response in short-circuit condition than that with higher biased V sd within sub-millisecond, and its spectral range can be extended to the infrared end of 1550 nm. |
---|---|
ISSN: | 1931-7573 1556-276X |