Pronounced Photovoltaic Response from Multi-layered MoTe2 Phototransistor with Asymmetric Contact Form

Abstract In this study, we fabricate air-stable p-type multi-layered MoTe2 phototransistor using Au as electrodes, which shows pronounced photovoltaic response in off-state with asymmetric contact form. By analyzing the spatially resolved photoresponse using scanning photocurrent microscopy, we foun...

Full description

Bibliographic Details
Main Authors: Junku Liu, Nan Guo, Xiaoyang Xiao, Kenan Zhang, Yi Jia, Shuyun Zhou, Yang Wu, Qunqing Li, Lin Xiao
Format: Article
Language:English
Published: SpringerOpen 2017-11-01
Series:Nanoscale Research Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s11671-017-2373-5
Description
Summary:Abstract In this study, we fabricate air-stable p-type multi-layered MoTe2 phototransistor using Au as electrodes, which shows pronounced photovoltaic response in off-state with asymmetric contact form. By analyzing the spatially resolved photoresponse using scanning photocurrent microscopy, we found that the potential steps are formed in the vicinity of the electrodes/MoTe2 interface due to the doping of the MoTe2 by the metal contacts. The potential step dominates the separation of photoexcited electron-hole pairs in short-circuit condition or with small V sd biased. Based on these findings, we infer that the asymmetric contact cross-section between MoTe2-source and MoTe2-drain electrodes is the reason to form non-zero net current and photovoltaic response. Furthermore, MoTe2 phototransistor shows a faster response in short-circuit condition than that with higher biased V sd within sub-millisecond, and its spectral range can be extended to the infrared end of 1550 nm.
ISSN:1931-7573
1556-276X