Arrangement of risk group with congenital fetus pathology using artificial neural nets

The aim of the study is the evaluation of the significance of various risk factors for congenital fetus pathology (congenital defect – CD) and the development of risk numeric scale. 424 pregnant women with fetus CD and 520 pregnant women with fetus without congenital defects have been examined. Arti...

Full description

Bibliographic Details
Main Authors: O. S. Philippov, A. A. Kazantseva
Format: Article
Language:English
Published: Siberian State Medical University (Tomsk) 2003-06-01
Series:Бюллетень сибирской медицины
Subjects:
Online Access:https://bulletin.ssmu.ru/jour/article/view/3765
_version_ 1827992064362545152
author O. S. Philippov
A. A. Kazantseva
author_facet O. S. Philippov
A. A. Kazantseva
author_sort O. S. Philippov
collection DOAJ
description The aim of the study is the evaluation of the significance of various risk factors for congenital fetus pathology (congenital defect – CD) and the development of risk numeric scale. 424 pregnant women with fetus CD and 520 pregnant women with fetus without congenital defects have been examined. Artificial neural nets have been used for investigation how various factors effect on pregnancy termination. It has been found that the important factors for congenital fetus defect risk are: age younger 18 years of an pregnant women, age older 35 years, noncarring of pregnancy in anamnesis, complicated clinical course of the first pregnancy trimester, CD cases in a family, ultrasonic markers of chromosome pathology in the first pregnancy trimester. Changes in maternal serum AFP, hCG and uE3 levels and blood flow disorders are important to forming high risk group. A numeric scale for CD risk has been developed on the basis of neuronic net analysis.
first_indexed 2024-04-10T01:15:03Z
format Article
id doaj.art-33238dc844684b5ea68e3ef0b11505db
institution Directory Open Access Journal
issn 1682-0363
1819-3684
language English
last_indexed 2024-04-10T01:15:03Z
publishDate 2003-06-01
publisher Siberian State Medical University (Tomsk)
record_format Article
series Бюллетень сибирской медицины
spelling doaj.art-33238dc844684b5ea68e3ef0b11505db2023-03-13T09:58:02ZengSiberian State Medical University (Tomsk)Бюллетень сибирской медицины1682-03631819-36842003-06-012210310910.20538/1682-0363-2003-2-103-1092385Arrangement of risk group with congenital fetus pathology using artificial neural netsO. S. Philippov0A. A. Kazantseva1Красноярская государственная медицинская академияМежрегиональный Красноярский диагностический центр медицинской генетикиThe aim of the study is the evaluation of the significance of various risk factors for congenital fetus pathology (congenital defect – CD) and the development of risk numeric scale. 424 pregnant women with fetus CD and 520 pregnant women with fetus without congenital defects have been examined. Artificial neural nets have been used for investigation how various factors effect on pregnancy termination. It has been found that the important factors for congenital fetus defect risk are: age younger 18 years of an pregnant women, age older 35 years, noncarring of pregnancy in anamnesis, complicated clinical course of the first pregnancy trimester, CD cases in a family, ultrasonic markers of chromosome pathology in the first pregnancy trimester. Changes in maternal serum AFP, hCG and uE3 levels and blood flow disorders are important to forming high risk group. A numeric scale for CD risk has been developed on the basis of neuronic net analysis.https://bulletin.ssmu.ru/jour/article/view/3765врожденные пороки развитияпренатальная диагностиканейронные сети
spellingShingle O. S. Philippov
A. A. Kazantseva
Arrangement of risk group with congenital fetus pathology using artificial neural nets
Бюллетень сибирской медицины
врожденные пороки развития
пренатальная диагностика
нейронные сети
title Arrangement of risk group with congenital fetus pathology using artificial neural nets
title_full Arrangement of risk group with congenital fetus pathology using artificial neural nets
title_fullStr Arrangement of risk group with congenital fetus pathology using artificial neural nets
title_full_unstemmed Arrangement of risk group with congenital fetus pathology using artificial neural nets
title_short Arrangement of risk group with congenital fetus pathology using artificial neural nets
title_sort arrangement of risk group with congenital fetus pathology using artificial neural nets
topic врожденные пороки развития
пренатальная диагностика
нейронные сети
url https://bulletin.ssmu.ru/jour/article/view/3765
work_keys_str_mv AT osphilippov arrangementofriskgroupwithcongenitalfetuspathologyusingartificialneuralnets
AT aakazantseva arrangementofriskgroupwithcongenitalfetuspathologyusingartificialneuralnets