Carbon Nanotube Fiber-Based Wearable Supercapacitors—A Review on Recent Advances

As wearable electronic devices are becoming an integral part of modern life, there is a vast demand for safe and efficient energy storage devices to power them. While the research and development of microbatteries and supercapacitors (SCs) have significantly progressed, the latter has attracted much...

Full description

Bibliographic Details
Main Authors: Kavitha Mulackampilly Joseph, Hunter J. Kasparian, Vesselin Shanov
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/18/6506
Description
Summary:As wearable electronic devices are becoming an integral part of modern life, there is a vast demand for safe and efficient energy storage devices to power them. While the research and development of microbatteries and supercapacitors (SCs) have significantly progressed, the latter has attracted much attention due to their excellent power density, longevity, and safety. Furthermore, SCs with a 1D fiber shape are preferred because of their ease of integration into today’s smart garments and other wearable devices. Fiber supercapacitors based on carbon nanotubes (CNT) are promising candidates with a unique 1D structure, high electrical and thermal conductivity, outstanding flexibility, excellent mechanical strength, and low gravimetric density. This review aims to serve as a comprehensive publication presenting the fundamentals and recent developments on CNT-fiber-based SCs. The first section gives a general overview of the supercapacitor types based on the charge storage mechanisms and electrode configuration, followed by the various fiber fabrication methods. The next section explores the different strategies used to enhance the electrochemical performance of these SCs, followed by a broad study on their stretchability and multifunctionality. Finally, the review presents the current performance and scalability challenges affecting the CNT-based SCs, highlighting their prospects.
ISSN:1996-1073