On the Neumann eigenvalues for second-order Sturm–Liouville difference equations

Abstract The paper is concerned with the Neumann eigenvalues for second-order Sturm–Liouville difference equations. By analyzing the new discriminant function, we show the interlacing properties between the periodic, antiperiodic, and Neumann eigenvalues. Moreover, when the potential sequence is sym...

Full description

Bibliographic Details
Main Author: Yan-Hsiou Cheng
Format: Article
Language:English
Published: SpringerOpen 2020-10-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-020-03064-3
_version_ 1818301953105461248
author Yan-Hsiou Cheng
author_facet Yan-Hsiou Cheng
author_sort Yan-Hsiou Cheng
collection DOAJ
description Abstract The paper is concerned with the Neumann eigenvalues for second-order Sturm–Liouville difference equations. By analyzing the new discriminant function, we show the interlacing properties between the periodic, antiperiodic, and Neumann eigenvalues. Moreover, when the potential sequence is symmetric and symmetric monotonic, we show the order relation between the first Dirichlet eigenvalue and the second Neumann eigenvalue, and prove that the minimum of the first Neumann eigenvalue gap is attained at the constant potential sequence.
first_indexed 2024-12-13T05:31:12Z
format Article
id doaj.art-33521a91bcd5477fbd3f583de077307b
institution Directory Open Access Journal
issn 1687-1847
language English
last_indexed 2024-12-13T05:31:12Z
publishDate 2020-10-01
publisher SpringerOpen
record_format Article
series Advances in Difference Equations
spelling doaj.art-33521a91bcd5477fbd3f583de077307b2022-12-21T23:58:04ZengSpringerOpenAdvances in Difference Equations1687-18472020-10-012020111710.1186/s13662-020-03064-3On the Neumann eigenvalues for second-order Sturm–Liouville difference equationsYan-Hsiou Cheng0Department of Mathematics and Information Education, National Taipei University of EducationAbstract The paper is concerned with the Neumann eigenvalues for second-order Sturm–Liouville difference equations. By analyzing the new discriminant function, we show the interlacing properties between the periodic, antiperiodic, and Neumann eigenvalues. Moreover, when the potential sequence is symmetric and symmetric monotonic, we show the order relation between the first Dirichlet eigenvalue and the second Neumann eigenvalue, and prove that the minimum of the first Neumann eigenvalue gap is attained at the constant potential sequence.http://link.springer.com/article/10.1186/s13662-020-03064-3Second-order difference equationsEigenvalue gapNeumann eigenvalues
spellingShingle Yan-Hsiou Cheng
On the Neumann eigenvalues for second-order Sturm–Liouville difference equations
Advances in Difference Equations
Second-order difference equations
Eigenvalue gap
Neumann eigenvalues
title On the Neumann eigenvalues for second-order Sturm–Liouville difference equations
title_full On the Neumann eigenvalues for second-order Sturm–Liouville difference equations
title_fullStr On the Neumann eigenvalues for second-order Sturm–Liouville difference equations
title_full_unstemmed On the Neumann eigenvalues for second-order Sturm–Liouville difference equations
title_short On the Neumann eigenvalues for second-order Sturm–Liouville difference equations
title_sort on the neumann eigenvalues for second order sturm liouville difference equations
topic Second-order difference equations
Eigenvalue gap
Neumann eigenvalues
url http://link.springer.com/article/10.1186/s13662-020-03064-3
work_keys_str_mv AT yanhsioucheng ontheneumanneigenvaluesforsecondordersturmliouvilledifferenceequations