Spatially-Controllable Hot Spots for Plasmon-Enhanced Second-Harmonic Generation in AgNP-ZnO Nanocavity Arrays
Plasmon-enhanced second-harmonic generation (PESHG) based on hybrid metal-dielectric nanostructures have extraordinary importance for developing efficient nanoscale nonlinear sources, which pave the way for new applications in photonic circuitry, quantum optics, and biosensors. However, the relative...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-12-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/8/12/1012 |
_version_ | 1811310655629688832 |
---|---|
author | Shaoxin Shen Min Gao Rongcheng Ban Huiyu Chen Xiangjie Wang Lihua Qian Jing Li Zhilin Yang |
author_facet | Shaoxin Shen Min Gao Rongcheng Ban Huiyu Chen Xiangjie Wang Lihua Qian Jing Li Zhilin Yang |
author_sort | Shaoxin Shen |
collection | DOAJ |
description | Plasmon-enhanced second-harmonic generation (PESHG) based on hybrid metal-dielectric nanostructures have extraordinary importance for developing efficient nanoscale nonlinear sources, which pave the way for new applications in photonic circuitry, quantum optics, and biosensors. However, the relatively high loss of excitation energies and the low spatial overlapping between the locally enhanced electromagnetic field and nonlinear materials still limit the promotion of nonlinear conversion performances in such hybrid systems. Here, we design and fabricate an array of silver nanoparticle-ZnO (AgNP-ZnO) nanocavities to serve as an efficient PESHG platform. The geometry of AgNP-ZnO nanocavity arrays provides a way to flexibly modulate hot spots in three-dimensional space, and to achieve a good mutual overlap of hot spots and ZnO material layers for realizing efficient SH photon generation originating from ZnO nanocavities. Compared to bare ZnO nanocavity arrays, the resulting hybrid AgNP-ZnO design of nanocavities reaches the maximum PESHG enhancement by a factor of approximately 31. Validated by simulations, we can further interpret the relative contribution of fundamental and harmonic modes to Ag-NP dependent PESHG performances, and reveal that the enhancement stems from the co-cooperation effect of plasmon-resonant enhancements both for fundamental and harmonic frequencies. Our findings offer a previously unreported method for designing efficient PESHG systems and pave a way for further understanding of a surface plasmon-coupled second-order emission mechanism for the enhancement of hybrid systems. |
first_indexed | 2024-04-13T10:02:44Z |
format | Article |
id | doaj.art-3352480a8a2744b7bdf731d164b6952e |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-04-13T10:02:44Z |
publishDate | 2018-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-3352480a8a2744b7bdf731d164b6952e2022-12-22T02:51:11ZengMDPI AGNanomaterials2079-49912018-12-01812101210.3390/nano8121012nano8121012Spatially-Controllable Hot Spots for Plasmon-Enhanced Second-Harmonic Generation in AgNP-ZnO Nanocavity ArraysShaoxin Shen0Min Gao1Rongcheng Ban2Huiyu Chen3Xiangjie Wang4Lihua Qian5Jing Li6Zhilin Yang7Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen University, Xiamen 361005, ChinaDepartment of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen University, Xiamen 361005, ChinaDepartment of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen University, Xiamen 361005, ChinaDepartment of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen University, Xiamen 361005, ChinaDepartment of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen University, Xiamen 361005, ChinaSchool of Physics, Huazhong University of Science and Technology, Wuhan 430074, ChinaDepartment of Physics, Pen-Tung Sah Micro-Nano Institute of Science and Technology, Xiamen University, Xiamen 361005, ChinaDepartment of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen University, Xiamen 361005, ChinaPlasmon-enhanced second-harmonic generation (PESHG) based on hybrid metal-dielectric nanostructures have extraordinary importance for developing efficient nanoscale nonlinear sources, which pave the way for new applications in photonic circuitry, quantum optics, and biosensors. However, the relatively high loss of excitation energies and the low spatial overlapping between the locally enhanced electromagnetic field and nonlinear materials still limit the promotion of nonlinear conversion performances in such hybrid systems. Here, we design and fabricate an array of silver nanoparticle-ZnO (AgNP-ZnO) nanocavities to serve as an efficient PESHG platform. The geometry of AgNP-ZnO nanocavity arrays provides a way to flexibly modulate hot spots in three-dimensional space, and to achieve a good mutual overlap of hot spots and ZnO material layers for realizing efficient SH photon generation originating from ZnO nanocavities. Compared to bare ZnO nanocavity arrays, the resulting hybrid AgNP-ZnO design of nanocavities reaches the maximum PESHG enhancement by a factor of approximately 31. Validated by simulations, we can further interpret the relative contribution of fundamental and harmonic modes to Ag-NP dependent PESHG performances, and reveal that the enhancement stems from the co-cooperation effect of plasmon-resonant enhancements both for fundamental and harmonic frequencies. Our findings offer a previously unreported method for designing efficient PESHG systems and pave a way for further understanding of a surface plasmon-coupled second-order emission mechanism for the enhancement of hybrid systems.https://www.mdpi.com/2079-4991/8/12/1012plasmonicssecond-harmonic generationhybrid nanostructurefinite-difference time-domain |
spellingShingle | Shaoxin Shen Min Gao Rongcheng Ban Huiyu Chen Xiangjie Wang Lihua Qian Jing Li Zhilin Yang Spatially-Controllable Hot Spots for Plasmon-Enhanced Second-Harmonic Generation in AgNP-ZnO Nanocavity Arrays Nanomaterials plasmonics second-harmonic generation hybrid nanostructure finite-difference time-domain |
title | Spatially-Controllable Hot Spots for Plasmon-Enhanced Second-Harmonic Generation in AgNP-ZnO Nanocavity Arrays |
title_full | Spatially-Controllable Hot Spots for Plasmon-Enhanced Second-Harmonic Generation in AgNP-ZnO Nanocavity Arrays |
title_fullStr | Spatially-Controllable Hot Spots for Plasmon-Enhanced Second-Harmonic Generation in AgNP-ZnO Nanocavity Arrays |
title_full_unstemmed | Spatially-Controllable Hot Spots for Plasmon-Enhanced Second-Harmonic Generation in AgNP-ZnO Nanocavity Arrays |
title_short | Spatially-Controllable Hot Spots for Plasmon-Enhanced Second-Harmonic Generation in AgNP-ZnO Nanocavity Arrays |
title_sort | spatially controllable hot spots for plasmon enhanced second harmonic generation in agnp zno nanocavity arrays |
topic | plasmonics second-harmonic generation hybrid nanostructure finite-difference time-domain |
url | https://www.mdpi.com/2079-4991/8/12/1012 |
work_keys_str_mv | AT shaoxinshen spatiallycontrollablehotspotsforplasmonenhancedsecondharmonicgenerationinagnpznonanocavityarrays AT mingao spatiallycontrollablehotspotsforplasmonenhancedsecondharmonicgenerationinagnpznonanocavityarrays AT rongchengban spatiallycontrollablehotspotsforplasmonenhancedsecondharmonicgenerationinagnpznonanocavityarrays AT huiyuchen spatiallycontrollablehotspotsforplasmonenhancedsecondharmonicgenerationinagnpznonanocavityarrays AT xiangjiewang spatiallycontrollablehotspotsforplasmonenhancedsecondharmonicgenerationinagnpznonanocavityarrays AT lihuaqian spatiallycontrollablehotspotsforplasmonenhancedsecondharmonicgenerationinagnpznonanocavityarrays AT jingli spatiallycontrollablehotspotsforplasmonenhancedsecondharmonicgenerationinagnpznonanocavityarrays AT zhilinyang spatiallycontrollablehotspotsforplasmonenhancedsecondharmonicgenerationinagnpznonanocavityarrays |