Image Processing for Bioluminescence Resonance Energy Transfer Measurement—BRET-Analyzer

A growing number of tools now allow live recordings of various signaling pathways and protein-protein interaction dynamics in time and space by ratiometric measurements, such as Bioluminescence Resonance Energy Transfer (BRET) Imaging. Accurate and reproducible analysis of ratiometric measurements h...

Full description

Bibliographic Details
Main Authors: Yan Chastagnier, Enora Moutin, Anne-Laure Hemonnot, Julie Perroy
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-01-01
Series:Frontiers in Computational Neuroscience
Subjects:
Online Access:http://journal.frontiersin.org/article/10.3389/fncom.2017.00118/full
_version_ 1818447788778717184
author Yan Chastagnier
Yan Chastagnier
Yan Chastagnier
Enora Moutin
Enora Moutin
Enora Moutin
Anne-Laure Hemonnot
Anne-Laure Hemonnot
Anne-Laure Hemonnot
Julie Perroy
Julie Perroy
Julie Perroy
author_facet Yan Chastagnier
Yan Chastagnier
Yan Chastagnier
Enora Moutin
Enora Moutin
Enora Moutin
Anne-Laure Hemonnot
Anne-Laure Hemonnot
Anne-Laure Hemonnot
Julie Perroy
Julie Perroy
Julie Perroy
author_sort Yan Chastagnier
collection DOAJ
description A growing number of tools now allow live recordings of various signaling pathways and protein-protein interaction dynamics in time and space by ratiometric measurements, such as Bioluminescence Resonance Energy Transfer (BRET) Imaging. Accurate and reproducible analysis of ratiometric measurements has thus become mandatory to interpret quantitative imaging. In order to fulfill this necessity, we have developed an open source toolset for Fiji—BRET-Analyzer—allowing a systematic analysis, from image processing to ratio quantification. We share this open source solution and a step-by-step tutorial at https://github.com/ychastagnier/BRET-Analyzer. This toolset proposes (1) image background subtraction, (2) image alignment over time, (3) a composite thresholding method of the image used as the denominator of the ratio to refine the precise limits of the sample, (4) pixel by pixel division of the images and efficient distribution of the ratio intensity on a pseudocolor scale, and (5) quantification of the ratio mean intensity and standard variation among pixels in chosen areas. In addition to systematize the analysis process, we show that the BRET-Analyzer allows proper reconstitution and quantification of the ratiometric image in time and space, even from heterogeneous subcellular volumes. Indeed, analyzing twice the same images, we demonstrate that compared to standard analysis BRET-Analyzer precisely define the luminescent specimen limits, enlightening proficient strengths from small and big ensembles over time. For example, we followed and quantified, in live, scaffold proteins interaction dynamics in neuronal sub-cellular compartments including dendritic spines, for half an hour. In conclusion, BRET-Analyzer provides a complete, versatile and efficient toolset for automated reproducible and meaningful image ratio analysis.
first_indexed 2024-12-14T20:09:11Z
format Article
id doaj.art-3361a997b2a44f778f2ad9e11fb30aef
institution Directory Open Access Journal
issn 1662-5188
language English
last_indexed 2024-12-14T20:09:11Z
publishDate 2018-01-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Computational Neuroscience
spelling doaj.art-3361a997b2a44f778f2ad9e11fb30aef2022-12-21T22:48:58ZengFrontiers Media S.A.Frontiers in Computational Neuroscience1662-51882018-01-011110.3389/fncom.2017.00118333853Image Processing for Bioluminescence Resonance Energy Transfer Measurement—BRET-AnalyzerYan Chastagnier0Yan Chastagnier1Yan Chastagnier2Enora Moutin3Enora Moutin4Enora Moutin5Anne-Laure Hemonnot6Anne-Laure Hemonnot7Anne-Laure Hemonnot8Julie Perroy9Julie Perroy10Julie Perroy11Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, FranceInstitut National de la Santé Et de la Recherche Médicale, U1191, Montpellier, FranceUniversités de Montpellier, UMR-5203, Montpellier, FranceCentre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, FranceInstitut National de la Santé Et de la Recherche Médicale, U1191, Montpellier, FranceUniversités de Montpellier, UMR-5203, Montpellier, FranceCentre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, FranceInstitut National de la Santé Et de la Recherche Médicale, U1191, Montpellier, FranceUniversités de Montpellier, UMR-5203, Montpellier, FranceCentre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, FranceInstitut National de la Santé Et de la Recherche Médicale, U1191, Montpellier, FranceUniversités de Montpellier, UMR-5203, Montpellier, FranceA growing number of tools now allow live recordings of various signaling pathways and protein-protein interaction dynamics in time and space by ratiometric measurements, such as Bioluminescence Resonance Energy Transfer (BRET) Imaging. Accurate and reproducible analysis of ratiometric measurements has thus become mandatory to interpret quantitative imaging. In order to fulfill this necessity, we have developed an open source toolset for Fiji—BRET-Analyzer—allowing a systematic analysis, from image processing to ratio quantification. We share this open source solution and a step-by-step tutorial at https://github.com/ychastagnier/BRET-Analyzer. This toolset proposes (1) image background subtraction, (2) image alignment over time, (3) a composite thresholding method of the image used as the denominator of the ratio to refine the precise limits of the sample, (4) pixel by pixel division of the images and efficient distribution of the ratio intensity on a pseudocolor scale, and (5) quantification of the ratio mean intensity and standard variation among pixels in chosen areas. In addition to systematize the analysis process, we show that the BRET-Analyzer allows proper reconstitution and quantification of the ratiometric image in time and space, even from heterogeneous subcellular volumes. Indeed, analyzing twice the same images, we demonstrate that compared to standard analysis BRET-Analyzer precisely define the luminescent specimen limits, enlightening proficient strengths from small and big ensembles over time. For example, we followed and quantified, in live, scaffold proteins interaction dynamics in neuronal sub-cellular compartments including dendritic spines, for half an hour. In conclusion, BRET-Analyzer provides a complete, versatile and efficient toolset for automated reproducible and meaningful image ratio analysis.http://journal.frontiersin.org/article/10.3389/fncom.2017.00118/fullopen source softwareautomatic image analysisratiometric measurementsbioluminescence resonance energy transfer
spellingShingle Yan Chastagnier
Yan Chastagnier
Yan Chastagnier
Enora Moutin
Enora Moutin
Enora Moutin
Anne-Laure Hemonnot
Anne-Laure Hemonnot
Anne-Laure Hemonnot
Julie Perroy
Julie Perroy
Julie Perroy
Image Processing for Bioluminescence Resonance Energy Transfer Measurement—BRET-Analyzer
Frontiers in Computational Neuroscience
open source software
automatic image analysis
ratiometric measurements
bioluminescence resonance energy transfer
title Image Processing for Bioluminescence Resonance Energy Transfer Measurement—BRET-Analyzer
title_full Image Processing for Bioluminescence Resonance Energy Transfer Measurement—BRET-Analyzer
title_fullStr Image Processing for Bioluminescence Resonance Energy Transfer Measurement—BRET-Analyzer
title_full_unstemmed Image Processing for Bioluminescence Resonance Energy Transfer Measurement—BRET-Analyzer
title_short Image Processing for Bioluminescence Resonance Energy Transfer Measurement—BRET-Analyzer
title_sort image processing for bioluminescence resonance energy transfer measurement bret analyzer
topic open source software
automatic image analysis
ratiometric measurements
bioluminescence resonance energy transfer
url http://journal.frontiersin.org/article/10.3389/fncom.2017.00118/full
work_keys_str_mv AT yanchastagnier imageprocessingforbioluminescenceresonanceenergytransfermeasurementbretanalyzer
AT yanchastagnier imageprocessingforbioluminescenceresonanceenergytransfermeasurementbretanalyzer
AT yanchastagnier imageprocessingforbioluminescenceresonanceenergytransfermeasurementbretanalyzer
AT enoramoutin imageprocessingforbioluminescenceresonanceenergytransfermeasurementbretanalyzer
AT enoramoutin imageprocessingforbioluminescenceresonanceenergytransfermeasurementbretanalyzer
AT enoramoutin imageprocessingforbioluminescenceresonanceenergytransfermeasurementbretanalyzer
AT annelaurehemonnot imageprocessingforbioluminescenceresonanceenergytransfermeasurementbretanalyzer
AT annelaurehemonnot imageprocessingforbioluminescenceresonanceenergytransfermeasurementbretanalyzer
AT annelaurehemonnot imageprocessingforbioluminescenceresonanceenergytransfermeasurementbretanalyzer
AT julieperroy imageprocessingforbioluminescenceresonanceenergytransfermeasurementbretanalyzer
AT julieperroy imageprocessingforbioluminescenceresonanceenergytransfermeasurementbretanalyzer
AT julieperroy imageprocessingforbioluminescenceresonanceenergytransfermeasurementbretanalyzer