Influence of Mechanical Screened Recycled Coarse Aggregates on Properties of Self-Compacting Concrete

The use of recycled coarse aggregates (RA) in concrete is a sustainable alternative to non-renewable natural aggregate (NA) to fabricate concrete products using in concrete structures. However, the adhered mortar on the surface of RA would considerably impact the qualities of concrete products. As a...

Full description

Bibliographic Details
Main Authors: Waiching Tang, Mehrnoush Khavarian, Ali Yousefi, Bill Landenberger, Hongzhi Cui
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/16/4/1483
Description
Summary:The use of recycled coarse aggregates (RA) in concrete is a sustainable alternative to non-renewable natural aggregate (NA) to fabricate concrete products using in concrete structures. However, the adhered mortar on the surface of RA would considerably impact the qualities of concrete products. As a practical treatment procedure, mechanical screening can remove the adhered mortar. This research aims to study the influence of mechanical screening on the fundamental properties of RA and the resulting self-compacting concrete (SCC). The RA were mechanically screened up to four times, and their physical properties including particle size distribution, water absorption, and crushing value were investigated. The properties of RA-SCC including workability, density, compressive and tensile strengths, modulus of elasticity, and microstructure were also examined. The results demonstrated that screening reduced the water absorption of RA from 6.26% to 5.33% and consequently enhanced the workability of RA-SCC. Furthermore, it was shown that increasing the screening up to twice improved the mechanical properties of concrete. In particular, screening increased the compressive strength of concrete by 15–35% compared to the concrete with unscreened RA. Similar improvements were found in tensile strength as well as the elastic modulus results. The microstructure of screened RA-SCC was comparable to that of the control concrete, showing minimal porosity and cracks along the interfacial transition zone. In conclusion, once or twice screening is recommended to the recycling facility plant to remove adequate amount of adhered mortar and fines while preventing damages to the RA. Improving the quality of RA via mechanical screening is one of the promising approaches to increase their potential for use in concrete, thereby reducing extraction of natural resources and promoting a circular economy.
ISSN:1996-1944