The Curing Kinetics of E-Glass Fiber/Epoxy Resin Prepreg and the Bending Properties of Its Products

The curing kinetics can influence the final macroscopic properties, particularly the three-point bending of the fiber-reinforced composite materials. In this research, the curing kinetics of commercially available glass fiber/epoxy resin prepregs were studied by non-isothermal differential scanning...

Full description

Bibliographic Details
Main Authors: Lvtao Zhu, Zhenxing Wang, Mahfuz Bin Rahman, Wei Shen, Chengyan Zhu
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/16/4673
Description
Summary:The curing kinetics can influence the final macroscopic properties, particularly the three-point bending of the fiber-reinforced composite materials. In this research, the curing kinetics of commercially available glass fiber/epoxy resin prepregs were studied by non-isothermal differential scanning calorimetry (DSC). The curing kinetic parameters were obtained by fitting and the apparent activation energy E<sub>a</sub> of the prepreg, the pre-exponent factor, and the reaction order value obtained. A phenomenological <i>n</i>th-order curing reaction kinetic model was established according to Kissinger equation and Crane equation. Furthermore, the optimal curing temperature of the prepregs was obtained by the T-β extrapolation method. A vacuum hot pressing technique was applied to prepare composite laminates. The pre-curing, curing, and post-curing temperatures were 116, 130, and 153 °C respectively. In addition, three-point bending was used to test the specimens’ fracture behavior, and the surface morphology was analyzed. The results show that the differences in the mechanical properties of the samples are relatively small, indicating that the process settings are reasonable.
ISSN:1996-1944