Prediksi Kategori Kelulusan Mahasiswa Menggunakan Metode Regresi Logistik Multinomial

Students must meet certain goals to earn a degree but can extend their time at university or drop out (DO). The problem of dropping out of students has become an important issue for tertiary institutions to ensure the success or graduation of students and reduce dropouts. DO can affect the accredit...

Full description

Bibliographic Details
Main Authors: Rafika Syahranita, Suhartono Suhartono, Syahiduz Zaman
Format: Article
Language:English
Published: Universitas Islam Negeri Sunan Kalijaga Yogyakarta 2023-05-01
Series:JISKA (Jurnal Informatika Sunan Kalijaga)
Subjects:
Online Access:https://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/3899
_version_ 1797817412124409856
author Rafika Syahranita
Suhartono Suhartono
Syahiduz Zaman
author_facet Rafika Syahranita
Suhartono Suhartono
Syahiduz Zaman
author_sort Rafika Syahranita
collection DOAJ
description Students must meet certain goals to earn a degree but can extend their time at university or drop out (DO). The problem of dropping out of students has become an important issue for tertiary institutions to ensure the success or graduation of students and reduce dropouts. DO can affect the accreditation of the tertiary institution. The quality of higher education institutions in Indonesia is measured based on accreditation from the National Accreditation Board for Higher Education or BAN-PT. One of the main standards measured is the Quality of Students and Graduates. The quality of educational accreditation is measured by the percentage of student graduation and the university's strategy to retain students. To predict student graduation based on graduation time categories, researchers collected academic data from students in 2012-2018 at the Informatics Engineering Study Program, State Islamic University of Maulana Malik Ibrahim Malang. The variables used as predictors are gender, type of entry pathway, and grade point average from semesters one to six. The resulting model was evaluated to obtain an accuracy value of 85.5%, a precision of 78.5%, a recall of 93.9%, and a micro f1-score of 89.8%. An accuracy value of 85.5% indicates that the system can classify properly using the logistic regression model.
first_indexed 2024-03-13T08:54:07Z
format Article
id doaj.art-3380aa32eb9c4455887fa5216a785079
institution Directory Open Access Journal
issn 2527-5836
2528-0074
language English
last_indexed 2024-03-13T08:54:07Z
publishDate 2023-05-01
publisher Universitas Islam Negeri Sunan Kalijaga Yogyakarta
record_format Article
series JISKA (Jurnal Informatika Sunan Kalijaga)
spelling doaj.art-3380aa32eb9c4455887fa5216a7850792023-05-29T05:41:03ZengUniversitas Islam Negeri Sunan Kalijaga YogyakartaJISKA (Jurnal Informatika Sunan Kalijaga)2527-58362528-00742023-05-018210.14421/jiska.2023.8.2.102-111Prediksi Kategori Kelulusan Mahasiswa Menggunakan Metode Regresi Logistik MultinomialRafika Syahranita0Suhartono Suhartono1Syahiduz Zaman2UIN Maulana Malik Ibrahim MalangUIN Maulana Malik Ibrahim MalangUIN Maulana Malik Ibrahim Malang Students must meet certain goals to earn a degree but can extend their time at university or drop out (DO). The problem of dropping out of students has become an important issue for tertiary institutions to ensure the success or graduation of students and reduce dropouts. DO can affect the accreditation of the tertiary institution. The quality of higher education institutions in Indonesia is measured based on accreditation from the National Accreditation Board for Higher Education or BAN-PT. One of the main standards measured is the Quality of Students and Graduates. The quality of educational accreditation is measured by the percentage of student graduation and the university's strategy to retain students. To predict student graduation based on graduation time categories, researchers collected academic data from students in 2012-2018 at the Informatics Engineering Study Program, State Islamic University of Maulana Malik Ibrahim Malang. The variables used as predictors are gender, type of entry pathway, and grade point average from semesters one to six. The resulting model was evaluated to obtain an accuracy value of 85.5%, a precision of 78.5%, a recall of 93.9%, and a micro f1-score of 89.8%. An accuracy value of 85.5% indicates that the system can classify properly using the logistic regression model. https://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/3899CategoriesGraduationPredictionLogistic RegressionMachine Learning
spellingShingle Rafika Syahranita
Suhartono Suhartono
Syahiduz Zaman
Prediksi Kategori Kelulusan Mahasiswa Menggunakan Metode Regresi Logistik Multinomial
JISKA (Jurnal Informatika Sunan Kalijaga)
Categories
Graduation
Prediction
Logistic Regression
Machine Learning
title Prediksi Kategori Kelulusan Mahasiswa Menggunakan Metode Regresi Logistik Multinomial
title_full Prediksi Kategori Kelulusan Mahasiswa Menggunakan Metode Regresi Logistik Multinomial
title_fullStr Prediksi Kategori Kelulusan Mahasiswa Menggunakan Metode Regresi Logistik Multinomial
title_full_unstemmed Prediksi Kategori Kelulusan Mahasiswa Menggunakan Metode Regresi Logistik Multinomial
title_short Prediksi Kategori Kelulusan Mahasiswa Menggunakan Metode Regresi Logistik Multinomial
title_sort prediksi kategori kelulusan mahasiswa menggunakan metode regresi logistik multinomial
topic Categories
Graduation
Prediction
Logistic Regression
Machine Learning
url https://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/3899
work_keys_str_mv AT rafikasyahranita prediksikategorikelulusanmahasiswamenggunakanmetoderegresilogistikmultinomial
AT suhartonosuhartono prediksikategorikelulusanmahasiswamenggunakanmetoderegresilogistikmultinomial
AT syahiduzzaman prediksikategorikelulusanmahasiswamenggunakanmetoderegresilogistikmultinomial