Weakly Ordered A-Commutative Partial Groups of Linear Operators Densely Defined on Hilbert Space
The notion of a generalized effect algebra is presented as a generalization of effect algebra for an algebraic description of the structure of the set of all positive linear operators densely defined on a Hilbert space with the usual sum of operators. The structure of the set of not only positive li...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
CTU Central Library
2013-01-01
|
Series: | Acta Polytechnica |
Subjects: | |
Online Access: | https://ojs.cvut.cz/ojs/index.php/ap/article/view/1807 |
Summary: | The notion of a generalized effect algebra is presented as a generalization of effect algebra for an algebraic description of the structure of the set of all positive linear operators densely defined on a Hilbert space with the usual sum of operators. The structure of the set of not only positive linear operators can be described with the notion of a weakly ordered partial commutative group (wop-group).Due to the non-constructive algebraic nature of the wop-group we introduce its stronger version called a weakly ordered partial a-commutative group (woa-group). We show that it also describes the structure of not only positive linear operators. |
---|---|
ISSN: | 1210-2709 1805-2363 |