Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3e

<p>The present work describes the implementation of the state of the art Cloud-<span class="inline-formula"><i>J</i></span> v7.3 photolysis rate calculation code in the EMEP MSC-W chemistry-transport model. Cloud-<span class="inline-formula">&l...

Full description

Bibliographic Details
Main Authors: W. E. van Caspel, D. Simpson, J. E. Jonson, A. M. K. Benedictow, Y. Ge, A. di Sarra, G. Pace, M. Vieno, H. L. Walker, M. R. Heal
Format: Article
Language:English
Published: Copernicus Publications 2023-12-01
Series:Geoscientific Model Development
Online Access:https://gmd.copernicus.org/articles/16/7433/2023/gmd-16-7433-2023.pdf
_version_ 1797384053713797120
author W. E. van Caspel
D. Simpson
D. Simpson
J. E. Jonson
A. M. K. Benedictow
Y. Ge
A. di Sarra
G. Pace
M. Vieno
H. L. Walker
H. L. Walker
H. L. Walker
M. R. Heal
author_facet W. E. van Caspel
D. Simpson
D. Simpson
J. E. Jonson
A. M. K. Benedictow
Y. Ge
A. di Sarra
G. Pace
M. Vieno
H. L. Walker
H. L. Walker
H. L. Walker
M. R. Heal
author_sort W. E. van Caspel
collection DOAJ
description <p>The present work describes the implementation of the state of the art Cloud-<span class="inline-formula"><i>J</i></span> v7.3 photolysis rate calculation code in the EMEP MSC-W chemistry-transport model. Cloud-<span class="inline-formula"><i>J</i></span> calculates photolysis rates and accounts for cloud and aerosol optical properties at model run time, replacing the old system based on tabulated values. The performance of Cloud-<span class="inline-formula"><i>J</i></span> is evaluated against aerial photolysis rate observations made over the Pacific Ocean and against surface observations from three measurement sites in Europe. Numerical experiments are performed to investigate the sensitivity of the calculated photolysis rates to the spatial and temporal model resolution, input meteorology model, simulated ozone column, and cloud effect parameterization. These experiments indicate that the calculated photolysis rates are most sensitive to the choice of input meteorology model and cloud effect parameterization while also showing that surface ozone photolysis rates can vary by up to 20 % due to daily variations in total ozone column. Further analysis investigates the impact of Cloud-<span class="inline-formula"><i>J</i></span> on the oxidizing capacity of the troposphere, aerosol–photolysis interactions, and surface air quality predictions. Results find that the annual mean mass-weighted tropospheric hydroxyl concentration is increased by 26 %, while the photolytic impact of aerosols is mostly limited to large tropical biomass-burning regions. Overall, Cloud-<span class="inline-formula"><i>J</i></span> represents a major improvement over the tabulated system, leading to improved model performance for predicting carbon monoxide and daily maximum ozone surface concentrations.</p>
first_indexed 2024-03-08T21:29:56Z
format Article
id doaj.art-338c9476767e4248a214d5e2dba9646e
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-03-08T21:29:56Z
publishDate 2023-12-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-338c9476767e4248a214d5e2dba9646e2023-12-21T07:32:14ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032023-12-01167433745910.5194/gmd-16-7433-2023Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3eW. E. van Caspel0D. Simpson1D. Simpson2J. E. Jonson3A. M. K. Benedictow4Y. Ge5A. di Sarra6G. Pace7M. Vieno8H. L. Walker9H. L. Walker10H. L. Walker11M. R. Heal12Norwegian Meteorological Institute, Oslo, NorwayNorwegian Meteorological Institute, Oslo, NorwayDepartment of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, SwedenNorwegian Meteorological Institute, Oslo, NorwayNorwegian Meteorological Institute, Oslo, NorwayNorwegian Meteorological Institute, Oslo, NorwayENEA Laboratory of Observations And Measurements for the Environment and Climate, Rome, ItalyENEA Laboratory of Observations And Measurements for the Environment and Climate, Rome, ItalyUK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Edinburgh EH26 0QB, UKUK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Edinburgh EH26 0QB, UKSchool of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UKnow at: Ricardo Energy & Environment, Blythswood Square, Glasgow, UKSchool of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK<p>The present work describes the implementation of the state of the art Cloud-<span class="inline-formula"><i>J</i></span> v7.3 photolysis rate calculation code in the EMEP MSC-W chemistry-transport model. Cloud-<span class="inline-formula"><i>J</i></span> calculates photolysis rates and accounts for cloud and aerosol optical properties at model run time, replacing the old system based on tabulated values. The performance of Cloud-<span class="inline-formula"><i>J</i></span> is evaluated against aerial photolysis rate observations made over the Pacific Ocean and against surface observations from three measurement sites in Europe. Numerical experiments are performed to investigate the sensitivity of the calculated photolysis rates to the spatial and temporal model resolution, input meteorology model, simulated ozone column, and cloud effect parameterization. These experiments indicate that the calculated photolysis rates are most sensitive to the choice of input meteorology model and cloud effect parameterization while also showing that surface ozone photolysis rates can vary by up to 20 % due to daily variations in total ozone column. Further analysis investigates the impact of Cloud-<span class="inline-formula"><i>J</i></span> on the oxidizing capacity of the troposphere, aerosol–photolysis interactions, and surface air quality predictions. Results find that the annual mean mass-weighted tropospheric hydroxyl concentration is increased by 26 %, while the photolytic impact of aerosols is mostly limited to large tropical biomass-burning regions. Overall, Cloud-<span class="inline-formula"><i>J</i></span> represents a major improvement over the tabulated system, leading to improved model performance for predicting carbon monoxide and daily maximum ozone surface concentrations.</p>https://gmd.copernicus.org/articles/16/7433/2023/gmd-16-7433-2023.pdf
spellingShingle W. E. van Caspel
D. Simpson
D. Simpson
J. E. Jonson
A. M. K. Benedictow
Y. Ge
A. di Sarra
G. Pace
M. Vieno
H. L. Walker
H. L. Walker
H. L. Walker
M. R. Heal
Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3e
Geoscientific Model Development
title Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3e
title_full Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3e
title_fullStr Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3e
title_full_unstemmed Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3e
title_short Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3e
title_sort implementation and evaluation of updated photolysis rates in the emep msc w chemistry transport model using cloud i j i v7 3e
url https://gmd.copernicus.org/articles/16/7433/2023/gmd-16-7433-2023.pdf
work_keys_str_mv AT wevancaspel implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e
AT dsimpson implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e
AT dsimpson implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e
AT jejonson implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e
AT amkbenedictow implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e
AT yge implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e
AT adisarra implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e
AT gpace implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e
AT mvieno implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e
AT hlwalker implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e
AT hlwalker implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e
AT hlwalker implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e
AT mrheal implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e