Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3e
<p>The present work describes the implementation of the state of the art Cloud-<span class="inline-formula"><i>J</i></span> v7.3 photolysis rate calculation code in the EMEP MSC-W chemistry-transport model. Cloud-<span class="inline-formula">&l...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2023-12-01
|
Series: | Geoscientific Model Development |
Online Access: | https://gmd.copernicus.org/articles/16/7433/2023/gmd-16-7433-2023.pdf |
_version_ | 1797384053713797120 |
---|---|
author | W. E. van Caspel D. Simpson D. Simpson J. E. Jonson A. M. K. Benedictow Y. Ge A. di Sarra G. Pace M. Vieno H. L. Walker H. L. Walker H. L. Walker M. R. Heal |
author_facet | W. E. van Caspel D. Simpson D. Simpson J. E. Jonson A. M. K. Benedictow Y. Ge A. di Sarra G. Pace M. Vieno H. L. Walker H. L. Walker H. L. Walker M. R. Heal |
author_sort | W. E. van Caspel |
collection | DOAJ |
description | <p>The present work describes the implementation of the state of the art Cloud-<span class="inline-formula"><i>J</i></span> v7.3 photolysis rate calculation code in the EMEP MSC-W chemistry-transport model. Cloud-<span class="inline-formula"><i>J</i></span> calculates photolysis rates and accounts for cloud and aerosol optical properties at model run time, replacing the old system based on tabulated values. The performance of Cloud-<span class="inline-formula"><i>J</i></span> is evaluated against aerial photolysis rate observations made over the Pacific Ocean and against surface observations from three measurement sites in Europe. Numerical experiments are performed to investigate the sensitivity of the calculated photolysis rates to the spatial and temporal model resolution, input meteorology model, simulated ozone column, and cloud effect parameterization. These experiments indicate that the calculated photolysis rates are most sensitive to the choice of input meteorology model and cloud effect parameterization while also showing that surface ozone photolysis rates can vary by up to 20 % due to daily variations in total ozone column. Further analysis investigates the impact of Cloud-<span class="inline-formula"><i>J</i></span> on the oxidizing capacity of the troposphere, aerosol–photolysis interactions, and surface air quality predictions. Results find that the annual mean mass-weighted tropospheric hydroxyl concentration is increased by 26 %, while the photolytic impact of aerosols is mostly limited to large tropical biomass-burning regions. Overall, Cloud-<span class="inline-formula"><i>J</i></span> represents a major improvement over the tabulated system, leading to improved model performance for predicting carbon monoxide and daily maximum ozone surface concentrations.</p> |
first_indexed | 2024-03-08T21:29:56Z |
format | Article |
id | doaj.art-338c9476767e4248a214d5e2dba9646e |
institution | Directory Open Access Journal |
issn | 1991-959X 1991-9603 |
language | English |
last_indexed | 2024-03-08T21:29:56Z |
publishDate | 2023-12-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Geoscientific Model Development |
spelling | doaj.art-338c9476767e4248a214d5e2dba9646e2023-12-21T07:32:14ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032023-12-01167433745910.5194/gmd-16-7433-2023Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3eW. E. van Caspel0D. Simpson1D. Simpson2J. E. Jonson3A. M. K. Benedictow4Y. Ge5A. di Sarra6G. Pace7M. Vieno8H. L. Walker9H. L. Walker10H. L. Walker11M. R. Heal12Norwegian Meteorological Institute, Oslo, NorwayNorwegian Meteorological Institute, Oslo, NorwayDepartment of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, SwedenNorwegian Meteorological Institute, Oslo, NorwayNorwegian Meteorological Institute, Oslo, NorwayNorwegian Meteorological Institute, Oslo, NorwayENEA Laboratory of Observations And Measurements for the Environment and Climate, Rome, ItalyENEA Laboratory of Observations And Measurements for the Environment and Climate, Rome, ItalyUK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Edinburgh EH26 0QB, UKUK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Edinburgh EH26 0QB, UKSchool of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UKnow at: Ricardo Energy & Environment, Blythswood Square, Glasgow, UKSchool of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK<p>The present work describes the implementation of the state of the art Cloud-<span class="inline-formula"><i>J</i></span> v7.3 photolysis rate calculation code in the EMEP MSC-W chemistry-transport model. Cloud-<span class="inline-formula"><i>J</i></span> calculates photolysis rates and accounts for cloud and aerosol optical properties at model run time, replacing the old system based on tabulated values. The performance of Cloud-<span class="inline-formula"><i>J</i></span> is evaluated against aerial photolysis rate observations made over the Pacific Ocean and against surface observations from three measurement sites in Europe. Numerical experiments are performed to investigate the sensitivity of the calculated photolysis rates to the spatial and temporal model resolution, input meteorology model, simulated ozone column, and cloud effect parameterization. These experiments indicate that the calculated photolysis rates are most sensitive to the choice of input meteorology model and cloud effect parameterization while also showing that surface ozone photolysis rates can vary by up to 20 % due to daily variations in total ozone column. Further analysis investigates the impact of Cloud-<span class="inline-formula"><i>J</i></span> on the oxidizing capacity of the troposphere, aerosol–photolysis interactions, and surface air quality predictions. Results find that the annual mean mass-weighted tropospheric hydroxyl concentration is increased by 26 %, while the photolytic impact of aerosols is mostly limited to large tropical biomass-burning regions. Overall, Cloud-<span class="inline-formula"><i>J</i></span> represents a major improvement over the tabulated system, leading to improved model performance for predicting carbon monoxide and daily maximum ozone surface concentrations.</p>https://gmd.copernicus.org/articles/16/7433/2023/gmd-16-7433-2023.pdf |
spellingShingle | W. E. van Caspel D. Simpson D. Simpson J. E. Jonson A. M. K. Benedictow Y. Ge A. di Sarra G. Pace M. Vieno H. L. Walker H. L. Walker H. L. Walker M. R. Heal Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3e Geoscientific Model Development |
title | Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3e |
title_full | Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3e |
title_fullStr | Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3e |
title_full_unstemmed | Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3e |
title_short | Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-<i>J</i> v7.3e |
title_sort | implementation and evaluation of updated photolysis rates in the emep msc w chemistry transport model using cloud i j i v7 3e |
url | https://gmd.copernicus.org/articles/16/7433/2023/gmd-16-7433-2023.pdf |
work_keys_str_mv | AT wevancaspel implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e AT dsimpson implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e AT dsimpson implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e AT jejonson implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e AT amkbenedictow implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e AT yge implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e AT adisarra implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e AT gpace implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e AT mvieno implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e AT hlwalker implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e AT hlwalker implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e AT hlwalker implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e AT mrheal implementationandevaluationofupdatedphotolysisratesintheemepmscwchemistrytransportmodelusingcloudijiv73e |