Evolution of atmospheric age of particles and its implications for the formation of a severe haze event in eastern China
<p>Atmospheric age reflects how long particles have been suspended in the atmosphere, which is closely associated with the evolution of air pollutants. Severe regional haze events occur frequently in China, influencing air quality, human health, and regional climate. Previous studies have expl...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2023-09-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/23/10563/2023/acp-23-10563-2023.pdf |
_version_ | 1827807582941609984 |
---|---|
author | X. Xie J. Hu M. Qin S. Guo M. Hu D. Ji H. Wang S. Lou C. Huang C. Liu H. Zhang Q. Ying H. Liao Y. Zhang |
author_facet | X. Xie J. Hu M. Qin S. Guo M. Hu D. Ji H. Wang S. Lou C. Huang C. Liu H. Zhang Q. Ying H. Liao Y. Zhang |
author_sort | X. Xie |
collection | DOAJ |
description | <p>Atmospheric age reflects how long particles have been suspended in the atmosphere, which is closely associated with the evolution of air pollutants. Severe regional haze events occur frequently in China, influencing air quality, human health, and regional climate. Previous studies have explored the characteristics of mass concentrations and compositions of fine particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) during haze events, but the evolution of atmospheric age remains unclear. In this study, the age-resolved University of California, Davis/California Institute of Technology (UCD/CIT) model was developed and applied to simulate the concentration and age distribution of PM<span class="inline-formula"><sub>2.5</sub></span> during a severe regional haze episode in eastern China. The results indicated that PM<span class="inline-formula"><sub>2.5</sub></span> concentrations in the North China Plain (NCP) gradually accumulated due to stagnant weather conditions during the beginning stage of the haze event. Accordingly, the atmospheric age of elemental carbon (EC), primary organic aerosol (POA), sulfate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="544235742d8f4a0f97153436b699bab8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-10563-2023-ie00001.svg" width="29pt" height="17pt" src="acp-23-10563-2023-ie00001.png"/></svg:svg></span></span>), and secondary organic aerosol (SOA) gradually increased. The subsequent PM<span class="inline-formula"><sub>2.5</sub></span> concentration growth was driven by the local chemical formation of nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a33a7d42b70ca1fe513ac92c5832eec2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-10563-2023-ie00002.svg" width="25pt" height="16pt" src="acp-23-10563-2023-ie00002.png"/></svg:svg></span></span>) under high relative humidity. The newly formed <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a02883d0956e7dc256b9fe9fffa70b09"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-10563-2023-ie00003.svg" width="25pt" height="16pt" src="acp-23-10563-2023-ie00003.png"/></svg:svg></span></span> particles led to a decrease in the mean atmospheric age of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8a872e45f44a0fc3c08e466e371cfb3a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-10563-2023-ie00004.svg" width="25pt" height="16pt" src="acp-23-10563-2023-ie00004.png"/></svg:svg></span></span> particles. During the regional transport stage, aged particles from the NCP moved to the downwind Yangtze River Delta (YRD) region, leading to a sharp increase in PM<span class="inline-formula"><sub>2.5</sub></span> concentrations and the average age of EC, POA, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="8c898138530c760447165fe6cdc920bb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-10563-2023-ie00005.svg" width="29pt" height="17pt" src="acp-23-10563-2023-ie00005.png"/></svg:svg></span></span>, and SOA in YRD. In contrast, the average age of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="eb51cd45ba2a21283d090226a04e61ba"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-10563-2023-ie00006.svg" width="25pt" height="16pt" src="acp-23-10563-2023-ie00006.png"/></svg:svg></span></span> and ammonium remained unchanged or even slightly decreased due to continuous local formation in the YRD region. Different evolution of the atmospheric age among these components provides a unique perspective on the formation of PM<span class="inline-formula"><sub>2.5</sub></span> components during the regional haze event. The information can also be used for designing effective control strategies for different components of PM<span class="inline-formula"><sub>2.5</sub></span>.</p> |
first_indexed | 2024-03-11T21:59:26Z |
format | Article |
id | doaj.art-3390afe252de40dd9cc850aafd2583ca |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-03-11T21:59:26Z |
publishDate | 2023-09-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-3390afe252de40dd9cc850aafd2583ca2023-09-25T12:58:08ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242023-09-0123105631057810.5194/acp-23-10563-2023Evolution of atmospheric age of particles and its implications for the formation of a severe haze event in eastern ChinaX. Xie0J. Hu1M. Qin2S. Guo3M. Hu4D. Ji5H. Wang6S. Lou7C. Huang8C. Liu9H. Zhang10Q. Ying11H. Liao12Y. Zhang13Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, ChinaJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, ChinaJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, ChinaState Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, ChinaState Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100191, ChinaState Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, ChinaState Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, ChinaState Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, ChinaCMA Earth System Modeling and Prediction Centre, State Key Laboratory of Severe Weather, China Meteorological Administration (CMA), Beijing 100081, ChinaDepartment of Environmental Science and Engineering, Fudan University, Shanghai 200438, ChinaZachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, USAJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, ChinaState Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China<p>Atmospheric age reflects how long particles have been suspended in the atmosphere, which is closely associated with the evolution of air pollutants. Severe regional haze events occur frequently in China, influencing air quality, human health, and regional climate. Previous studies have explored the characteristics of mass concentrations and compositions of fine particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) during haze events, but the evolution of atmospheric age remains unclear. In this study, the age-resolved University of California, Davis/California Institute of Technology (UCD/CIT) model was developed and applied to simulate the concentration and age distribution of PM<span class="inline-formula"><sub>2.5</sub></span> during a severe regional haze episode in eastern China. The results indicated that PM<span class="inline-formula"><sub>2.5</sub></span> concentrations in the North China Plain (NCP) gradually accumulated due to stagnant weather conditions during the beginning stage of the haze event. Accordingly, the atmospheric age of elemental carbon (EC), primary organic aerosol (POA), sulfate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="544235742d8f4a0f97153436b699bab8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-10563-2023-ie00001.svg" width="29pt" height="17pt" src="acp-23-10563-2023-ie00001.png"/></svg:svg></span></span>), and secondary organic aerosol (SOA) gradually increased. The subsequent PM<span class="inline-formula"><sub>2.5</sub></span> concentration growth was driven by the local chemical formation of nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a33a7d42b70ca1fe513ac92c5832eec2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-10563-2023-ie00002.svg" width="25pt" height="16pt" src="acp-23-10563-2023-ie00002.png"/></svg:svg></span></span>) under high relative humidity. The newly formed <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a02883d0956e7dc256b9fe9fffa70b09"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-10563-2023-ie00003.svg" width="25pt" height="16pt" src="acp-23-10563-2023-ie00003.png"/></svg:svg></span></span> particles led to a decrease in the mean atmospheric age of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8a872e45f44a0fc3c08e466e371cfb3a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-10563-2023-ie00004.svg" width="25pt" height="16pt" src="acp-23-10563-2023-ie00004.png"/></svg:svg></span></span> particles. During the regional transport stage, aged particles from the NCP moved to the downwind Yangtze River Delta (YRD) region, leading to a sharp increase in PM<span class="inline-formula"><sub>2.5</sub></span> concentrations and the average age of EC, POA, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">SO</mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="8c898138530c760447165fe6cdc920bb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-10563-2023-ie00005.svg" width="29pt" height="17pt" src="acp-23-10563-2023-ie00005.png"/></svg:svg></span></span>, and SOA in YRD. In contrast, the average age of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="eb51cd45ba2a21283d090226a04e61ba"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-10563-2023-ie00006.svg" width="25pt" height="16pt" src="acp-23-10563-2023-ie00006.png"/></svg:svg></span></span> and ammonium remained unchanged or even slightly decreased due to continuous local formation in the YRD region. Different evolution of the atmospheric age among these components provides a unique perspective on the formation of PM<span class="inline-formula"><sub>2.5</sub></span> components during the regional haze event. The information can also be used for designing effective control strategies for different components of PM<span class="inline-formula"><sub>2.5</sub></span>.</p>https://acp.copernicus.org/articles/23/10563/2023/acp-23-10563-2023.pdf |
spellingShingle | X. Xie J. Hu M. Qin S. Guo M. Hu D. Ji H. Wang S. Lou C. Huang C. Liu H. Zhang Q. Ying H. Liao Y. Zhang Evolution of atmospheric age of particles and its implications for the formation of a severe haze event in eastern China Atmospheric Chemistry and Physics |
title | Evolution of atmospheric age of particles and its implications for the formation of a severe haze event in eastern China |
title_full | Evolution of atmospheric age of particles and its implications for the formation of a severe haze event in eastern China |
title_fullStr | Evolution of atmospheric age of particles and its implications for the formation of a severe haze event in eastern China |
title_full_unstemmed | Evolution of atmospheric age of particles and its implications for the formation of a severe haze event in eastern China |
title_short | Evolution of atmospheric age of particles and its implications for the formation of a severe haze event in eastern China |
title_sort | evolution of atmospheric age of particles and its implications for the formation of a severe haze event in eastern china |
url | https://acp.copernicus.org/articles/23/10563/2023/acp-23-10563-2023.pdf |
work_keys_str_mv | AT xxie evolutionofatmosphericageofparticlesanditsimplicationsfortheformationofaseverehazeeventineasternchina AT jhu evolutionofatmosphericageofparticlesanditsimplicationsfortheformationofaseverehazeeventineasternchina AT mqin evolutionofatmosphericageofparticlesanditsimplicationsfortheformationofaseverehazeeventineasternchina AT sguo evolutionofatmosphericageofparticlesanditsimplicationsfortheformationofaseverehazeeventineasternchina AT mhu evolutionofatmosphericageofparticlesanditsimplicationsfortheformationofaseverehazeeventineasternchina AT dji evolutionofatmosphericageofparticlesanditsimplicationsfortheformationofaseverehazeeventineasternchina AT hwang evolutionofatmosphericageofparticlesanditsimplicationsfortheformationofaseverehazeeventineasternchina AT slou evolutionofatmosphericageofparticlesanditsimplicationsfortheformationofaseverehazeeventineasternchina AT chuang evolutionofatmosphericageofparticlesanditsimplicationsfortheformationofaseverehazeeventineasternchina AT cliu evolutionofatmosphericageofparticlesanditsimplicationsfortheformationofaseverehazeeventineasternchina AT hzhang evolutionofatmosphericageofparticlesanditsimplicationsfortheformationofaseverehazeeventineasternchina AT qying evolutionofatmosphericageofparticlesanditsimplicationsfortheformationofaseverehazeeventineasternchina AT hliao evolutionofatmosphericageofparticlesanditsimplicationsfortheformationofaseverehazeeventineasternchina AT yzhang evolutionofatmosphericageofparticlesanditsimplicationsfortheformationofaseverehazeeventineasternchina |