A Design of a Time Synchronization Protocol Based on Dynamic Route and Forwarding Certification

Time synchronization is a key technique in large-scale wireless sensor network applications. In order to tackle the problems of multi-hop synchronization error accumulation, clock frequency skew swinging, and network topology changes, a time synchronization protocol based on dynamic routing and forw...

Full description

Bibliographic Details
Main Authors: Dejing Zhang, Yuan Yuan, Yanqing Bi
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/18/5061
Description
Summary:Time synchronization is a key technique in large-scale wireless sensor network applications. In order to tackle the problems of multi-hop synchronization error accumulation, clock frequency skew swinging, and network topology changes, a time synchronization protocol based on dynamic routing and forwarding certification (DRFC-TSP) is proposed in this paper. During the time synchronization process, a reference node with fewer synchronization hops and a more stable clock frequency is selected for every single hop, in order to obtain the best synchronization route. In this way, synchronization error accumulation can be restrained and the impact of clock frequency skew swinging on the time synchronization precision can be reduced. Furthermore, changes of the network topology can be well adapted by dynamic routing, in which the reference node is updated in every synchronization round. In the forwarding certification process, the status of nodes forwarding synchronous information outwards is authored by information exchange between neighboring nodes. Only synchronous information of the certificated nodes with a better performance can be forwarded. The network traffic can be decreased and the time synchronization precision can also be ensured, even with less energy consumption. Feasibility testing in large-scale wireless sensor networks is verified on NS2 simulation and more performances are evaluated on an embedded Linux platform.
ISSN:1424-8220