Summary: | This paper aims to provide an effective measurement method for the distribution of deformations and strains focusing on the response to external loading of bone-implant interfaces. To achieve this target, a novel speckle interference imaging method is proposed by introducing phosphate buffer saline medium, in which the samples were completely placed into a phosphate buffer saline solution medium to stable the water molecules. The stability of interferometry imaging is analyzed by using the concepts of co-occurrence matrix and moment of inertia. A series of experiments to measure load-driven deformation and strain in the bone-implant interface was carried out, and the experiments results were analyzed and discussed. It shows that the proposed method is feasible and effective for the no-contact strain measurements of biomaterials in a physiological condition. The proposed strain distribution sensing system will contribute to evaluating computational simulations and improving selection of implant designs and materials.
|