Development of Micro Laser Powder Bed Fusion for Additive Manufacturing of Inconel 718
The development of laser powder bed fusion (LPBF) additive manufacturing techniques for microfabrication raises the need for the employment of new process configurations and parameters. In this study, micro-LPBF of Ni-based superalloy Inconel 718 using a spot laser of 30 µm was examined. The respons...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-07-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/15/15/5231 |
Summary: | The development of laser powder bed fusion (LPBF) additive manufacturing techniques for microfabrication raises the need for the employment of new process configurations and parameters. In this study, micro-LPBF of Ni-based superalloy Inconel 718 using a spot laser of 30 µm was examined. The response surface method with a central composite design was employed to determine the optimum process parameter. A wide range of heat treatment cycles was applied to additively manufacture Inconel samples. The mechanical behavior of heat-treated Inconel 718 parts fabricated via micro-LPBF was investigated and correlated to the microstructural characteristics. The result showed that using optimum input energy density led to a homogenous distribution of nanosized (<10 nm) circular γ′ and plate-like γ″ particles in the γ matrix. Uniaxial tensile tests on heat-treated samples showed that ageing temperature is the most determinant factor in the mechanical strength of additively manufactured Inconel 718. |
---|---|
ISSN: | 1996-1944 |