Summary: | Aqueous solutions with heavy metals such as Cr (VI), Pb, and Cd (II) can have an adverse effect on human health because of their toxicity. As a result, it is important to remove these heavy metals from the aquatic environment to save the human healthy. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and field-emission scanning electron microscopy (FE-SEM) used in this research to characterize cobalt ferrite (CoFe2O4) nanoparticles and confirm the structure of Co-Fe2O4. These particles were used to make porous samples and burned at 1050 °C in mixtures of (0, 3, 5, 7, and 10) wt.% of cobalt ferrite and kaolin with 20 wt.% of charcoal. These samples serve as adsorbents that remove Pb from the wastewater. The highest rates of removal were confirmed using various treatments at (pH 3, 7, and 9). A Williamson-Hall plot was used to determine the crystal size (33) nm. The FT-IR spectra exhibited spinel-ferrite characteristics. Studies using FE-SEM demonstrated that the sample was in Nano crystalline. Using a vibrating sample magnetometer (VSM), different magnetic properties are taken from the hysteresis loops such as saturation magnetization (Ms) and remanence (Mr) and coercivity (Hc). It was found that increasing ferrite content, increased adsorption efficiency.
|