Summary: | An apparent proliferation of filamentous algal blooms (FABs) in pristine lakes around the world is a source of concern. However, little is known about the predominant drivers and effects of such FABs on lake ecosystems. We observed FABs in a large clear-water lake (Bear Lake, UT/ID, USA) and analyzed long-term lake monitoring data and algal stable isotopes for changes in climate, food webs and anthropogenic nutrient loading, respectively, as potential local drivers of FAB formation. Furthermore, we quantified in situ metabolism rates on rocks with and without FABs at two locations. Long-term monitoring data revealed increasing summer water temperatures (2009 to 2020) and decreasing winter ice cover (1923 to 2021). The FABs had δ<sup>15</sup>N values that were higher than 0 ‰, indicating a potential nutrient influx to Bear Lake from livestock or human waste. Climate change and anthropogenic nutrients may thus have facilitated FAB occurrence. Contrary to expectation, the FABs exhibited significantly lower gross primary production rates compared to low-biomass periphyton communities, indicating potentially negative effects of FAB proliferations on lake food webs. Our results highlight the need for expanding lake monitoring programs to include littoral zones to detect and mitigate changes occurring in lakes.
|