Experimental and numerical investigation of flow patterns in shallow rectangular reservoirs with symmetrically positioned inlet and outlet channels

ABSTRACT Shallow flows correspond to turbulent flows whose horizontal dimensions are considerably larger than the vertical one. In Hydraulic Engineering, they refer, e.g., to stormwater basins, stabilization ponds for wastewater treatment and aquaculture tanks. Since they involve low flow velocitie...

Full description

Bibliographic Details
Main Authors: Daniel Augusto de Miranda, Álefe Marques dos Reis, Márcia Maria Lara Pinto Coelho
Format: Article
Language:English
Published: Associação Brasileira de Recursos Hídricos 2018-05-01
Series:Revista Brasileira de Recursos Hídricos
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2318-03312018000100216&tlng=en
Description
Summary:ABSTRACT Shallow flows correspond to turbulent flows whose horizontal dimensions are considerably larger than the vertical one. In Hydraulic Engineering, they refer, e.g., to stormwater basins, stabilization ponds for wastewater treatment and aquaculture tanks. Since they involve low flow velocities, a continuous settling process often affects such shallow reservoirs. Therefore, it is important to expand the knowledge about the influence of its geometry on the hydrodynamic behavior and the sedimentation tendency. This paper aims to analyze flow patterns in a rectangular reservoir with symmetrically positioned upstream and downstream channels, taking into account three different flow rates under steady flow regime (0.50, 1.25 and 3.40 L/s). Experimental tests were performed in a laboratory prototype, consisted of a 3.0 m long and 2.0 m wide reservoir, with a maximum depth of 0.30 m. Also, it was applied the WOLF 2D software for numerical modeling of all variants. Experimentally, a symmetrical hydrodynamic behavior was observed only for the lowest flow rate, while the flow pattern was asymmetrical for the other cases. On the other hand, the numerical model indicated hydrodynamic symmetry for all scenarios.
ISSN:2318-0331