Fermionic neural-network states for ab-initio electronic structure
Despite the importance of neural-network quantum states, representing fermionic matter is yet to be fully achieved. Here the authors map fermionic degrees of freedom to spin ones and use neural-networks to perform electronic structure calculations on model diatomic molecules to achieve chemical accu...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2020-05-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-020-15724-9 |
_version_ | 1818717120380272640 |
---|---|
author | Kenny Choo Antonio Mezzacapo Giuseppe Carleo |
author_facet | Kenny Choo Antonio Mezzacapo Giuseppe Carleo |
author_sort | Kenny Choo |
collection | DOAJ |
description | Despite the importance of neural-network quantum states, representing fermionic matter is yet to be fully achieved. Here the authors map fermionic degrees of freedom to spin ones and use neural-networks to perform electronic structure calculations on model diatomic molecules to achieve chemical accuracy. |
first_indexed | 2024-12-17T19:30:06Z |
format | Article |
id | doaj.art-33bdf8234a854173ac0adada5147c2a5 |
institution | Directory Open Access Journal |
issn | 2041-1723 |
language | English |
last_indexed | 2024-12-17T19:30:06Z |
publishDate | 2020-05-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Nature Communications |
spelling | doaj.art-33bdf8234a854173ac0adada5147c2a52022-12-21T21:35:16ZengNature PortfolioNature Communications2041-17232020-05-011111710.1038/s41467-020-15724-9Fermionic neural-network states for ab-initio electronic structureKenny Choo0Antonio Mezzacapo1Giuseppe Carleo2Department of Physics, University of ZurichIBM Thomas J. Watson Research CenterCenter for Computational Quantum Physics, Flatiron InstituteDespite the importance of neural-network quantum states, representing fermionic matter is yet to be fully achieved. Here the authors map fermionic degrees of freedom to spin ones and use neural-networks to perform electronic structure calculations on model diatomic molecules to achieve chemical accuracy.https://doi.org/10.1038/s41467-020-15724-9 |
spellingShingle | Kenny Choo Antonio Mezzacapo Giuseppe Carleo Fermionic neural-network states for ab-initio electronic structure Nature Communications |
title | Fermionic neural-network states for ab-initio electronic structure |
title_full | Fermionic neural-network states for ab-initio electronic structure |
title_fullStr | Fermionic neural-network states for ab-initio electronic structure |
title_full_unstemmed | Fermionic neural-network states for ab-initio electronic structure |
title_short | Fermionic neural-network states for ab-initio electronic structure |
title_sort | fermionic neural network states for ab initio electronic structure |
url | https://doi.org/10.1038/s41467-020-15724-9 |
work_keys_str_mv | AT kennychoo fermionicneuralnetworkstatesforabinitioelectronicstructure AT antoniomezzacapo fermionicneuralnetworkstatesforabinitioelectronicstructure AT giuseppecarleo fermionicneuralnetworkstatesforabinitioelectronicstructure |