Classification of single normal and Alzheimer’s disease individuals from cortical sources of resting state EEG rhythms

Previous studies have shown abnormal power and functional connectivity of resting state electroencephalographic (EEG) rhythms in groups of Alzheimer’s disease (AD) compared to healthy elderly (Nold) subjects. Here we tested the best classification rate of 120 AD patients and 100 matched Nold subject...

Full description

Bibliographic Details
Main Authors: Claudio eBabiloni, Antonio Ivano eTriggiani, Roberta eLizio, Giacomo eTattoli, Vitoantonio eBevilacqua, Andrea eSoricelli, Raffaele eFerri, Flavio eNobili, Loreto eGesualdo, Susanna eCordone, José Carlos eMillán-Calenti, Ana eBuján, Rosanna eTortelli, Valentina eCardinali, Orietta eBarulli, Antonio eGiannini, Pantaleo eSpagnolo, Silvia eArmenise, Grazia eBuenza, Gaetano eScianatico, Giancarlo eLogroscino, Giovanni B. Frisoni, Claudio eDel Percio
Format: Article
Language:English
Published: Frontiers Media S.A. 2016-02-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fnins.2016.00047/full
_version_ 1818488961838874624
author Claudio eBabiloni
Claudio eBabiloni
Antonio Ivano eTriggiani
Roberta eLizio
Roberta eLizio
Giacomo eTattoli
Vitoantonio eBevilacqua
Andrea eSoricelli
Andrea eSoricelli
Raffaele eFerri
Flavio eNobili
Loreto eGesualdo
Susanna eCordone
José Carlos eMillán-Calenti
Ana eBuján
Rosanna eTortelli
Valentina eCardinali
Valentina eCardinali
Orietta eBarulli
Antonio eGiannini
Pantaleo eSpagnolo
Silvia eArmenise
Grazia eBuenza
Gaetano eScianatico
Giancarlo eLogroscino
Giancarlo eLogroscino
Giovanni B. Frisoni
Giovanni B. Frisoni
Claudio eDel Percio
author_facet Claudio eBabiloni
Claudio eBabiloni
Antonio Ivano eTriggiani
Roberta eLizio
Roberta eLizio
Giacomo eTattoli
Vitoantonio eBevilacqua
Andrea eSoricelli
Andrea eSoricelli
Raffaele eFerri
Flavio eNobili
Loreto eGesualdo
Susanna eCordone
José Carlos eMillán-Calenti
Ana eBuján
Rosanna eTortelli
Valentina eCardinali
Valentina eCardinali
Orietta eBarulli
Antonio eGiannini
Pantaleo eSpagnolo
Silvia eArmenise
Grazia eBuenza
Gaetano eScianatico
Giancarlo eLogroscino
Giancarlo eLogroscino
Giovanni B. Frisoni
Giovanni B. Frisoni
Claudio eDel Percio
author_sort Claudio eBabiloni
collection DOAJ
description Previous studies have shown abnormal power and functional connectivity of resting state electroencephalographic (EEG) rhythms in groups of Alzheimer’s disease (AD) compared to healthy elderly (Nold) subjects. Here we tested the best classification rate of 120 AD patients and 100 matched Nold subjects using EEG markers based on cortical sources of power and functional connectivity of these rhythms. EEG data were recorded during resting state eyes-closed condition. Exact low-resolution brain electromagnetic tomography (eLORETA) estimated the power and functional connectivity of cortical sources in frontal, central, parietal, occipital, temporal, and limbic regions. Delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), beta 2 (20-30 Hz), and gamma (30-40 Hz) were the frequency bands of interest. The classification rates of interest were those with an area under the receiver operating characteristic curve (AUROC) higher than 0.7 as a threshold for a moderate classification rate (i.e. 70%). Results showed that the following EEG markers overcame this threshold: (i) central, parietal, occipital, temporal, and limbic delta/alpha 1 current density; (ii) central, parietal, occipital temporal, and limbic delta/alpha 2 current density; (iii) frontal theta/alpha 1 current density; (iv) occipital delta/alpha 1 inter-hemispherical connectivity; (v) occipital-temporal theta/alpha 1 right and left intra-hemispherical connectivity; and (vi) parietal-limbic alpha 1 right intra-hemispherical connectivity. Occipital delta/alpha 1 current density showed the best classification rate (sensitivity of 73.3%, specificity of 78%, accuracy of 75.5%, and AUROC of 82%). These results suggest that EEG source markers can classify Nold and AD individuals with a moderate classification rate higher than 80%.
first_indexed 2024-12-10T16:57:47Z
format Article
id doaj.art-33c638e123a841a98044251700479255
institution Directory Open Access Journal
issn 1662-453X
language English
last_indexed 2024-12-10T16:57:47Z
publishDate 2016-02-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neuroscience
spelling doaj.art-33c638e123a841a980442517004792552022-12-22T01:40:40ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2016-02-011010.3389/fnins.2016.00047166913Classification of single normal and Alzheimer’s disease individuals from cortical sources of resting state EEG rhythmsClaudio eBabiloni0Claudio eBabiloni1Antonio Ivano eTriggiani2Roberta eLizio3Roberta eLizio4Giacomo eTattoli5Vitoantonio eBevilacqua6Andrea eSoricelli7Andrea eSoricelli8Raffaele eFerri9Flavio eNobili10Loreto eGesualdo11Susanna eCordone12José Carlos eMillán-Calenti13Ana eBuján14Rosanna eTortelli15Valentina eCardinali16Valentina eCardinali17Orietta eBarulli18Antonio eGiannini19Pantaleo eSpagnolo20Silvia eArmenise21Grazia eBuenza22Gaetano eScianatico23Giancarlo eLogroscino24Giancarlo eLogroscino25Giovanni B. Frisoni26Giovanni B. Frisoni27Claudio eDel Percio28University of Rome, SapienzaIRCCS San Raffaele PisanaUniversity of FoggiaUniversity of Rome, SapienzaIRCCS San Raffaele PisanaPolytechnic of BariPolytechnic of BariIRCCS SDNUniversity of Naples ParthenopeIRCCS Oasi Institute for Research on Mental Retardation and Brain AgingUniversity of GenoaUniversity of BariUniversity of Rome, SapienzaUniversity of A CoruñaUniversity of A CoruñaUniversity of Bari Aldo Moro, Pia Fondazione Cardinale G. PanicoHospital “Di Venere”University of Bari Aldo MoroUniversity of Bari Aldo Moro, Pia Fondazione Cardinale G. PanicoHospital “Di Venere”F. Ferrari HospitalCard. G. Panico HospitalHospital “Di Venere”University of Bari Aldo Moro, Pia Fondazione Cardinale G. PanicoUniversity of Bari Aldo Moro, Pia Fondazione Cardinale G. PanicoCard. G. Panico HospitalIRCCS Centro “S. Giovanni di Dio-F.B.F.”University Hospitals and University of GenevaIRCCS San Raffaele PisanaPrevious studies have shown abnormal power and functional connectivity of resting state electroencephalographic (EEG) rhythms in groups of Alzheimer’s disease (AD) compared to healthy elderly (Nold) subjects. Here we tested the best classification rate of 120 AD patients and 100 matched Nold subjects using EEG markers based on cortical sources of power and functional connectivity of these rhythms. EEG data were recorded during resting state eyes-closed condition. Exact low-resolution brain electromagnetic tomography (eLORETA) estimated the power and functional connectivity of cortical sources in frontal, central, parietal, occipital, temporal, and limbic regions. Delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), beta 2 (20-30 Hz), and gamma (30-40 Hz) were the frequency bands of interest. The classification rates of interest were those with an area under the receiver operating characteristic curve (AUROC) higher than 0.7 as a threshold for a moderate classification rate (i.e. 70%). Results showed that the following EEG markers overcame this threshold: (i) central, parietal, occipital, temporal, and limbic delta/alpha 1 current density; (ii) central, parietal, occipital temporal, and limbic delta/alpha 2 current density; (iii) frontal theta/alpha 1 current density; (iv) occipital delta/alpha 1 inter-hemispherical connectivity; (v) occipital-temporal theta/alpha 1 right and left intra-hemispherical connectivity; and (vi) parietal-limbic alpha 1 right intra-hemispherical connectivity. Occipital delta/alpha 1 current density showed the best classification rate (sensitivity of 73.3%, specificity of 78%, accuracy of 75.5%, and AUROC of 82%). These results suggest that EEG source markers can classify Nold and AD individuals with a moderate classification rate higher than 80%.http://journal.frontiersin.org/Journal/10.3389/fnins.2016.00047/fullElectroencephalography (EEG)ROC CurveAlzheimer’s disease (AD)Classification rateDelta rhythmsAlpha rhythms.
spellingShingle Claudio eBabiloni
Claudio eBabiloni
Antonio Ivano eTriggiani
Roberta eLizio
Roberta eLizio
Giacomo eTattoli
Vitoantonio eBevilacqua
Andrea eSoricelli
Andrea eSoricelli
Raffaele eFerri
Flavio eNobili
Loreto eGesualdo
Susanna eCordone
José Carlos eMillán-Calenti
Ana eBuján
Rosanna eTortelli
Valentina eCardinali
Valentina eCardinali
Orietta eBarulli
Antonio eGiannini
Pantaleo eSpagnolo
Silvia eArmenise
Grazia eBuenza
Gaetano eScianatico
Giancarlo eLogroscino
Giancarlo eLogroscino
Giovanni B. Frisoni
Giovanni B. Frisoni
Claudio eDel Percio
Classification of single normal and Alzheimer’s disease individuals from cortical sources of resting state EEG rhythms
Frontiers in Neuroscience
Electroencephalography (EEG)
ROC Curve
Alzheimer’s disease (AD)
Classification rate
Delta rhythms
Alpha rhythms.
title Classification of single normal and Alzheimer’s disease individuals from cortical sources of resting state EEG rhythms
title_full Classification of single normal and Alzheimer’s disease individuals from cortical sources of resting state EEG rhythms
title_fullStr Classification of single normal and Alzheimer’s disease individuals from cortical sources of resting state EEG rhythms
title_full_unstemmed Classification of single normal and Alzheimer’s disease individuals from cortical sources of resting state EEG rhythms
title_short Classification of single normal and Alzheimer’s disease individuals from cortical sources of resting state EEG rhythms
title_sort classification of single normal and alzheimer s disease individuals from cortical sources of resting state eeg rhythms
topic Electroencephalography (EEG)
ROC Curve
Alzheimer’s disease (AD)
Classification rate
Delta rhythms
Alpha rhythms.
url http://journal.frontiersin.org/Journal/10.3389/fnins.2016.00047/full
work_keys_str_mv AT claudioebabiloni classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT claudioebabiloni classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT antonioivanoetriggiani classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT robertaelizio classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT robertaelizio classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT giacomoetattoli classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT vitoantonioebevilacqua classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT andreaesoricelli classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT andreaesoricelli classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT raffaeleeferri classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT flavioenobili classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT loretoegesualdo classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT susannaecordone classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT josecarlosemillancalenti classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT anaebujan classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT rosannaetortelli classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT valentinaecardinali classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT valentinaecardinali classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT oriettaebarulli classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT antonioegiannini classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT pantaleoespagnolo classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT silviaearmenise classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT graziaebuenza classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT gaetanoescianatico classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT giancarloelogroscino classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT giancarloelogroscino classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT giovannibfrisoni classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT giovannibfrisoni classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms
AT claudioedelpercio classificationofsinglenormalandalzheimersdiseaseindividualsfromcorticalsourcesofrestingstateeegrhythms