Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time

<p>The turbulent kinetic energy dissipation rate is one of the most important quantities characterizing turbulence. Experimental studies of a turbulent flow in terms of the energy dissipation rate often rely on one-dimensional measurements of the flow velocity fluctuations in time. In this wor...

Full description

Bibliographic Details
Main Authors: M. Schröder, T. Bätge, E. Bodenschatz, M. Wilczek, G. Bagheri
Format: Article
Language:English
Published: Copernicus Publications 2024-01-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/17/627/2024/amt-17-627-2024.pdf
_version_ 1797344736071122944
author M. Schröder
M. Schröder
T. Bätge
T. Bätge
E. Bodenschatz
E. Bodenschatz
E. Bodenschatz
M. Wilczek
M. Wilczek
G. Bagheri
author_facet M. Schröder
M. Schröder
T. Bätge
T. Bätge
E. Bodenschatz
E. Bodenschatz
E. Bodenschatz
M. Wilczek
M. Wilczek
G. Bagheri
author_sort M. Schröder
collection DOAJ
description <p>The turbulent kinetic energy dissipation rate is one of the most important quantities characterizing turbulence. Experimental studies of a turbulent flow in terms of the energy dissipation rate often rely on one-dimensional measurements of the flow velocity fluctuations in time. In this work, we first use direct numerical simulation of stationary homogeneous isotropic turbulence at Taylor-scale Reynolds numbers <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">74</mn><mo>≤</mo><msub><mi>R</mi><mi mathvariant="italic">λ</mi></msub><mo>≤</mo><mn mathvariant="normal">321</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="70pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="f57f0097def5657b86185f64c0d42568"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-627-2024-ie00001.svg" width="70pt" height="12pt" src="amt-17-627-2024-ie00001.png"/></svg:svg></span></span> to evaluate different methods for inferring the energy dissipation rate from one-dimensional velocity time records. We systematically investigate the influence of the finite turbulence intensity and the misalignment between the mean flow direction and the measurement probe, and we derive analytical expressions for the errors associated with these parameters. We further investigate how statistical averaging for different time windows affects the results as a function of <span class="inline-formula"><i>R</i><sub><i>λ</i></sub></span>. The results are then combined with Max Planck Variable Density Turbulence Tunnel hot-wire measurements at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">147</mn><mo>≤</mo><msub><mi>R</mi><mi mathvariant="italic">λ</mi></msub><mo>≤</mo><mn mathvariant="normal">5864</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="82pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="ae37250181e5b26a5949962d95a13cc6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-627-2024-ie00002.svg" width="82pt" height="12pt" src="amt-17-627-2024-ie00002.png"/></svg:svg></span></span> to investigate flow conditions similar to those in the atmospheric boundary layer. Finally, practical guidelines for estimating the energy dissipation rate from one-dimensional atmospheric velocity records are given.</p>
first_indexed 2024-03-08T11:07:02Z
format Article
id doaj.art-33c77b480b5043178e6da118c8791de6
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-03-08T11:07:02Z
publishDate 2024-01-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-33c77b480b5043178e6da118c8791de62024-01-26T14:36:24ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482024-01-011762765710.5194/amt-17-627-2024Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in timeM. Schröder0M. Schröder1T. Bätge2T. Bätge3E. Bodenschatz4E. Bodenschatz5E. Bodenschatz6M. Wilczek7M. Wilczek8G. Bagheri9Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, GermanyFaculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, GermanyMax Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, GermanyFaculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, GermanyMax Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, GermanyFaculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, GermanyPhysics Department, Cornell University, 523 Clark Hall, Ithaca, NY 14853, USAMax Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, GermanyTheoretical Physics I, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, GermanyMax Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany<p>The turbulent kinetic energy dissipation rate is one of the most important quantities characterizing turbulence. Experimental studies of a turbulent flow in terms of the energy dissipation rate often rely on one-dimensional measurements of the flow velocity fluctuations in time. In this work, we first use direct numerical simulation of stationary homogeneous isotropic turbulence at Taylor-scale Reynolds numbers <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">74</mn><mo>≤</mo><msub><mi>R</mi><mi mathvariant="italic">λ</mi></msub><mo>≤</mo><mn mathvariant="normal">321</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="70pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="f57f0097def5657b86185f64c0d42568"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-627-2024-ie00001.svg" width="70pt" height="12pt" src="amt-17-627-2024-ie00001.png"/></svg:svg></span></span> to evaluate different methods for inferring the energy dissipation rate from one-dimensional velocity time records. We systematically investigate the influence of the finite turbulence intensity and the misalignment between the mean flow direction and the measurement probe, and we derive analytical expressions for the errors associated with these parameters. We further investigate how statistical averaging for different time windows affects the results as a function of <span class="inline-formula"><i>R</i><sub><i>λ</i></sub></span>. The results are then combined with Max Planck Variable Density Turbulence Tunnel hot-wire measurements at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">147</mn><mo>≤</mo><msub><mi>R</mi><mi mathvariant="italic">λ</mi></msub><mo>≤</mo><mn mathvariant="normal">5864</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="82pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="ae37250181e5b26a5949962d95a13cc6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-627-2024-ie00002.svg" width="82pt" height="12pt" src="amt-17-627-2024-ie00002.png"/></svg:svg></span></span> to investigate flow conditions similar to those in the atmospheric boundary layer. Finally, practical guidelines for estimating the energy dissipation rate from one-dimensional atmospheric velocity records are given.</p>https://amt.copernicus.org/articles/17/627/2024/amt-17-627-2024.pdf
spellingShingle M. Schröder
M. Schröder
T. Bätge
T. Bätge
E. Bodenschatz
E. Bodenschatz
E. Bodenschatz
M. Wilczek
M. Wilczek
G. Bagheri
Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time
Atmospheric Measurement Techniques
title Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time
title_full Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time
title_fullStr Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time
title_full_unstemmed Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time
title_short Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time
title_sort estimating the turbulent kinetic energy dissipation rate from one dimensional velocity measurements in time
url https://amt.copernicus.org/articles/17/627/2024/amt-17-627-2024.pdf
work_keys_str_mv AT mschroder estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime
AT mschroder estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime
AT tbatge estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime
AT tbatge estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime
AT ebodenschatz estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime
AT ebodenschatz estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime
AT ebodenschatz estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime
AT mwilczek estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime
AT mwilczek estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime
AT gbagheri estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime