Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time
<p>The turbulent kinetic energy dissipation rate is one of the most important quantities characterizing turbulence. Experimental studies of a turbulent flow in terms of the energy dissipation rate often rely on one-dimensional measurements of the flow velocity fluctuations in time. In this wor...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2024-01-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/17/627/2024/amt-17-627-2024.pdf |
_version_ | 1797344736071122944 |
---|---|
author | M. Schröder M. Schröder T. Bätge T. Bätge E. Bodenschatz E. Bodenschatz E. Bodenschatz M. Wilczek M. Wilczek G. Bagheri |
author_facet | M. Schröder M. Schröder T. Bätge T. Bätge E. Bodenschatz E. Bodenschatz E. Bodenschatz M. Wilczek M. Wilczek G. Bagheri |
author_sort | M. Schröder |
collection | DOAJ |
description | <p>The turbulent kinetic energy dissipation rate is one of the most important quantities characterizing turbulence. Experimental studies of a turbulent flow in terms of the energy dissipation rate often rely on one-dimensional measurements of the flow velocity fluctuations in time. In this work, we first use direct numerical simulation of stationary homogeneous isotropic turbulence at Taylor-scale Reynolds numbers <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">74</mn><mo>≤</mo><msub><mi>R</mi><mi mathvariant="italic">λ</mi></msub><mo>≤</mo><mn mathvariant="normal">321</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="70pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="f57f0097def5657b86185f64c0d42568"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-627-2024-ie00001.svg" width="70pt" height="12pt" src="amt-17-627-2024-ie00001.png"/></svg:svg></span></span> to evaluate different methods for inferring the energy dissipation rate from one-dimensional velocity time records. We systematically investigate the influence of the finite turbulence intensity and the misalignment between the mean flow direction and the measurement probe, and we derive analytical expressions for the errors associated with these parameters. We further investigate how statistical averaging for different time windows affects the results as a function of <span class="inline-formula"><i>R</i><sub><i>λ</i></sub></span>. The results are then combined with Max Planck Variable Density Turbulence Tunnel hot-wire measurements at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">147</mn><mo>≤</mo><msub><mi>R</mi><mi mathvariant="italic">λ</mi></msub><mo>≤</mo><mn mathvariant="normal">5864</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="82pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="ae37250181e5b26a5949962d95a13cc6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-627-2024-ie00002.svg" width="82pt" height="12pt" src="amt-17-627-2024-ie00002.png"/></svg:svg></span></span> to investigate flow conditions similar to those in the atmospheric boundary layer. Finally, practical guidelines for estimating the energy dissipation rate from one-dimensional atmospheric velocity records are given.</p> |
first_indexed | 2024-03-08T11:07:02Z |
format | Article |
id | doaj.art-33c77b480b5043178e6da118c8791de6 |
institution | Directory Open Access Journal |
issn | 1867-1381 1867-8548 |
language | English |
last_indexed | 2024-03-08T11:07:02Z |
publishDate | 2024-01-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Measurement Techniques |
spelling | doaj.art-33c77b480b5043178e6da118c8791de62024-01-26T14:36:24ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482024-01-011762765710.5194/amt-17-627-2024Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in timeM. Schröder0M. Schröder1T. Bätge2T. Bätge3E. Bodenschatz4E. Bodenschatz5E. Bodenschatz6M. Wilczek7M. Wilczek8G. Bagheri9Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, GermanyFaculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, GermanyMax Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, GermanyFaculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, GermanyMax Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, GermanyFaculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, GermanyPhysics Department, Cornell University, 523 Clark Hall, Ithaca, NY 14853, USAMax Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, GermanyTheoretical Physics I, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, GermanyMax Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany<p>The turbulent kinetic energy dissipation rate is one of the most important quantities characterizing turbulence. Experimental studies of a turbulent flow in terms of the energy dissipation rate often rely on one-dimensional measurements of the flow velocity fluctuations in time. In this work, we first use direct numerical simulation of stationary homogeneous isotropic turbulence at Taylor-scale Reynolds numbers <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">74</mn><mo>≤</mo><msub><mi>R</mi><mi mathvariant="italic">λ</mi></msub><mo>≤</mo><mn mathvariant="normal">321</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="70pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="f57f0097def5657b86185f64c0d42568"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-627-2024-ie00001.svg" width="70pt" height="12pt" src="amt-17-627-2024-ie00001.png"/></svg:svg></span></span> to evaluate different methods for inferring the energy dissipation rate from one-dimensional velocity time records. We systematically investigate the influence of the finite turbulence intensity and the misalignment between the mean flow direction and the measurement probe, and we derive analytical expressions for the errors associated with these parameters. We further investigate how statistical averaging for different time windows affects the results as a function of <span class="inline-formula"><i>R</i><sub><i>λ</i></sub></span>. The results are then combined with Max Planck Variable Density Turbulence Tunnel hot-wire measurements at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">147</mn><mo>≤</mo><msub><mi>R</mi><mi mathvariant="italic">λ</mi></msub><mo>≤</mo><mn mathvariant="normal">5864</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="82pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="ae37250181e5b26a5949962d95a13cc6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-17-627-2024-ie00002.svg" width="82pt" height="12pt" src="amt-17-627-2024-ie00002.png"/></svg:svg></span></span> to investigate flow conditions similar to those in the atmospheric boundary layer. Finally, practical guidelines for estimating the energy dissipation rate from one-dimensional atmospheric velocity records are given.</p>https://amt.copernicus.org/articles/17/627/2024/amt-17-627-2024.pdf |
spellingShingle | M. Schröder M. Schröder T. Bätge T. Bätge E. Bodenschatz E. Bodenschatz E. Bodenschatz M. Wilczek M. Wilczek G. Bagheri Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time Atmospheric Measurement Techniques |
title | Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time |
title_full | Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time |
title_fullStr | Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time |
title_full_unstemmed | Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time |
title_short | Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time |
title_sort | estimating the turbulent kinetic energy dissipation rate from one dimensional velocity measurements in time |
url | https://amt.copernicus.org/articles/17/627/2024/amt-17-627-2024.pdf |
work_keys_str_mv | AT mschroder estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime AT mschroder estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime AT tbatge estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime AT tbatge estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime AT ebodenschatz estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime AT ebodenschatz estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime AT ebodenschatz estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime AT mwilczek estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime AT mwilczek estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime AT gbagheri estimatingtheturbulentkineticenergydissipationratefromonedimensionalvelocitymeasurementsintime |