Adiabatic quantum imaginary time evolution
We introduce an adiabatic state preparation protocol which implements quantum imaginary time evolution under the Hamiltonian of the system. Unlike the original quantum imaginary time evolution algorithm, adiabatic quantum imaginary time evolution does not require quantum state tomography during its...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2024-07-01
|
Series: | Physical Review Research |
Online Access: | http://doi.org/10.1103/PhysRevResearch.6.033084 |
_version_ | 1827185747675840512 |
---|---|
author | Kasra Hejazi Mario Motta Garnet Kin-Lic Chan |
author_facet | Kasra Hejazi Mario Motta Garnet Kin-Lic Chan |
author_sort | Kasra Hejazi |
collection | DOAJ |
description | We introduce an adiabatic state preparation protocol which implements quantum imaginary time evolution under the Hamiltonian of the system. Unlike the original quantum imaginary time evolution algorithm, adiabatic quantum imaginary time evolution does not require quantum state tomography during its runtime and, unlike standard adiabatic state preparation, the final Hamiltonian is not the system Hamiltonian. Instead, the algorithm obtains the adiabatic Hamiltonian by integrating a classical differential equation that ensures that one follows the imaginary time evolution state trajectory. We introduce some heuristics that allow this protocol to be implemented on quantum architectures with limited resources. We explore the performance of this algorithm via classical simulations in a one-dimensional spin model and highlight essential features that determine its cost, performance, and implementability for longer times, and compare to the original quantum imaginary time evolution for ground-state preparation. More generally, our algorithm expands the range of states accessible to adiabatic state preparation methods beyond those that are expressed as ground states of simple explicit Hamiltonians. |
first_indexed | 2025-03-21T06:55:18Z |
format | Article |
id | doaj.art-33d6fcc7d3e94783bfe9cee33c443995 |
institution | Directory Open Access Journal |
issn | 2643-1564 |
language | English |
last_indexed | 2025-03-21T06:55:18Z |
publishDate | 2024-07-01 |
publisher | American Physical Society |
record_format | Article |
series | Physical Review Research |
spelling | doaj.art-33d6fcc7d3e94783bfe9cee33c4439952024-07-18T14:03:59ZengAmerican Physical SocietyPhysical Review Research2643-15642024-07-016303308410.1103/PhysRevResearch.6.033084Adiabatic quantum imaginary time evolutionKasra HejaziMario MottaGarnet Kin-Lic ChanWe introduce an adiabatic state preparation protocol which implements quantum imaginary time evolution under the Hamiltonian of the system. Unlike the original quantum imaginary time evolution algorithm, adiabatic quantum imaginary time evolution does not require quantum state tomography during its runtime and, unlike standard adiabatic state preparation, the final Hamiltonian is not the system Hamiltonian. Instead, the algorithm obtains the adiabatic Hamiltonian by integrating a classical differential equation that ensures that one follows the imaginary time evolution state trajectory. We introduce some heuristics that allow this protocol to be implemented on quantum architectures with limited resources. We explore the performance of this algorithm via classical simulations in a one-dimensional spin model and highlight essential features that determine its cost, performance, and implementability for longer times, and compare to the original quantum imaginary time evolution for ground-state preparation. More generally, our algorithm expands the range of states accessible to adiabatic state preparation methods beyond those that are expressed as ground states of simple explicit Hamiltonians.http://doi.org/10.1103/PhysRevResearch.6.033084 |
spellingShingle | Kasra Hejazi Mario Motta Garnet Kin-Lic Chan Adiabatic quantum imaginary time evolution Physical Review Research |
title | Adiabatic quantum imaginary time evolution |
title_full | Adiabatic quantum imaginary time evolution |
title_fullStr | Adiabatic quantum imaginary time evolution |
title_full_unstemmed | Adiabatic quantum imaginary time evolution |
title_short | Adiabatic quantum imaginary time evolution |
title_sort | adiabatic quantum imaginary time evolution |
url | http://doi.org/10.1103/PhysRevResearch.6.033084 |
work_keys_str_mv | AT kasrahejazi adiabaticquantumimaginarytimeevolution AT mariomotta adiabaticquantumimaginarytimeevolution AT garnetkinlicchan adiabaticquantumimaginarytimeevolution |