Equitable and Paired Equitable Domination in Inflated Graphs and Their Complements

Domination plays an indispensable role in graph theory. Various types of domination explore various types of applications. Equal-status people work together and interlace with each other easily. In this paper, the paired equitable domination of a graph, its inflated graph, and its complement of an i...

Full description

Bibliographic Details
Main Authors: Narayanan Kumaran, Annamalai Meenakshi, Robert Cep, Jayavelu Udaya Prakash, Ondrej Mizera
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/12/1134
_version_ 1797382020465164288
author Narayanan Kumaran
Annamalai Meenakshi
Robert Cep
Jayavelu Udaya Prakash
Ondrej Mizera
author_facet Narayanan Kumaran
Annamalai Meenakshi
Robert Cep
Jayavelu Udaya Prakash
Ondrej Mizera
author_sort Narayanan Kumaran
collection DOAJ
description Domination plays an indispensable role in graph theory. Various types of domination explore various types of applications. Equal-status people work together and interlace with each other easily. In this paper, the paired equitable domination of a graph, its inflated graph, and its complement of an inflated graph were studied. The relationship between the domination number of the graph, the equitable domination number, and the paired equitable domination number of complements of the inflated graph were established. Furthermore, we proved the Nordhaus–Gaddum-type inequality, that is, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mrow><mi>γ</mi></mrow><mrow><mi>p</mi><mi>r</mi></mrow><mrow><mi>e</mi></mrow></msubsup><mo stretchy="false">(</mo><mi>H</mi><mo stretchy="false">)</mo><mo>+</mo><msubsup><mrow><mi>γ</mi></mrow><mrow><mi>p</mi><mi>r</mi></mrow><mrow><mi>e</mi></mrow></msubsup><mo stretchy="false">(</mo><mi>H</mi><mo stretchy="false">)</mo><mo>≤</mo><mn>6</mn></mrow></semantics></math></inline-formula> if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi></mrow></semantics></math></inline-formula> is a graph with <i>m</i> nodes where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>2</mn><mo stretchy="false">(</mo><mi>m</mi><mi>o</mi><mi>d</mi><mo> </mo><mn>8</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> = (<i>m</i>/2) for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></semantics></math></inline-formula>. The challenges and limitations of this parameter of paired equitable and equitable domination depends on the degree of the vertex of the graph. Practical applications are discussed in various fields and illustrated using the studied parameter.
first_indexed 2024-03-08T20:59:27Z
format Article
id doaj.art-33e3635e774f4c66afb3d02e0e9d7cfa
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-08T20:59:27Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-33e3635e774f4c66afb3d02e0e9d7cfa2023-12-22T13:53:20ZengMDPI AGAxioms2075-16802023-12-011212113410.3390/axioms12121134Equitable and Paired Equitable Domination in Inflated Graphs and Their ComplementsNarayanan Kumaran0Annamalai Meenakshi1Robert Cep2Jayavelu Udaya Prakash3Ondrej Mizera4Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, IndiaDepartment of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, IndiaDepartment of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 70800 Ostrava, Czech RepublicDepartment of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, IndiaDepartment of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 70800 Ostrava, Czech RepublicDomination plays an indispensable role in graph theory. Various types of domination explore various types of applications. Equal-status people work together and interlace with each other easily. In this paper, the paired equitable domination of a graph, its inflated graph, and its complement of an inflated graph were studied. The relationship between the domination number of the graph, the equitable domination number, and the paired equitable domination number of complements of the inflated graph were established. Furthermore, we proved the Nordhaus–Gaddum-type inequality, that is, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mrow><mi>γ</mi></mrow><mrow><mi>p</mi><mi>r</mi></mrow><mrow><mi>e</mi></mrow></msubsup><mo stretchy="false">(</mo><mi>H</mi><mo stretchy="false">)</mo><mo>+</mo><msubsup><mrow><mi>γ</mi></mrow><mrow><mi>p</mi><mi>r</mi></mrow><mrow><mi>e</mi></mrow></msubsup><mo stretchy="false">(</mo><mi>H</mi><mo stretchy="false">)</mo><mo>≤</mo><mn>6</mn></mrow></semantics></math></inline-formula> if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi></mrow></semantics></math></inline-formula> is a graph with <i>m</i> nodes where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>2</mn><mo stretchy="false">(</mo><mi>m</mi><mi>o</mi><mi>d</mi><mo> </mo><mn>8</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> = (<i>m</i>/2) for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></semantics></math></inline-formula>. The challenges and limitations of this parameter of paired equitable and equitable domination depends on the degree of the vertex of the graph. Practical applications are discussed in various fields and illustrated using the studied parameter.https://www.mdpi.com/2075-1680/12/12/1134dominationinflated graphcomplement graphNordhaus–Gaddam inequality
spellingShingle Narayanan Kumaran
Annamalai Meenakshi
Robert Cep
Jayavelu Udaya Prakash
Ondrej Mizera
Equitable and Paired Equitable Domination in Inflated Graphs and Their Complements
Axioms
domination
inflated graph
complement graph
Nordhaus–Gaddam inequality
title Equitable and Paired Equitable Domination in Inflated Graphs and Their Complements
title_full Equitable and Paired Equitable Domination in Inflated Graphs and Their Complements
title_fullStr Equitable and Paired Equitable Domination in Inflated Graphs and Their Complements
title_full_unstemmed Equitable and Paired Equitable Domination in Inflated Graphs and Their Complements
title_short Equitable and Paired Equitable Domination in Inflated Graphs and Their Complements
title_sort equitable and paired equitable domination in inflated graphs and their complements
topic domination
inflated graph
complement graph
Nordhaus–Gaddam inequality
url https://www.mdpi.com/2075-1680/12/12/1134
work_keys_str_mv AT narayanankumaran equitableandpairedequitabledominationininflatedgraphsandtheircomplements
AT annamalaimeenakshi equitableandpairedequitabledominationininflatedgraphsandtheircomplements
AT robertcep equitableandpairedequitabledominationininflatedgraphsandtheircomplements
AT jayaveluudayaprakash equitableandpairedequitabledominationininflatedgraphsandtheircomplements
AT ondrejmizera equitableandpairedequitabledominationininflatedgraphsandtheircomplements