Motion Characteristics of Self-Sensing Piezoelectric Actuator for Yarn Micro-Gripper

In order to solve the problem of low response frequency and poor consistency of conventional yarn grippers in weft accumulators, in this study, a piezoelectric yarn gripper is used instead of conventional yarn grippers and the motion characteristics of its actuator are studied. This gripper uses a b...

Full description

Bibliographic Details
Main Authors: Laihu Peng, Yuan Sun, Yubao Qi, Xin Ru
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/6/2620
Description
Summary:In order to solve the problem of low response frequency and poor consistency of conventional yarn grippers in weft accumulators, in this study, a piezoelectric yarn gripper is used instead of conventional yarn grippers and the motion characteristics of its actuator are studied. This gripper uses a bimorph piezoelectric bending actuator with a low-cost, well integrated self-sensing method based on charge measurement. The modeling of the piezoelectric micromanipulator is based on the piezoelectric and Euler–Bernoulli beam equations. The static and dynamic characteristics of the piezoelectric actuator as well as the self-sensing capability were experimentally tested. The experimental results show that the maximum output displacement at the end of the piezoelectric actuator is 834 μm, and the maximum output force is 388 μN at 150 V driving voltage. The stability and consistency of its response are also very good, with a response speed of 24 ms. The self-sensing test of the output force also proved the feasibility of the self-sensing method used, with an error of 0.74%. The piezoelectric yarn gripper studied in this paper is promising for practical clamping applications.
ISSN:2076-3417