Cell Therapy for Diabetes Using Piscine Islet Tissue

The islet tissue, called Brockmann bodies, in certain teleost fish is anatomically distinct from the pancreatic exocrine tissue and can be easily identified macroscopically. Expensive islet isolation procedures, such as required when procuring islet tissue from mammalian pancreases, are unnecessary....

Full description

Bibliographic Details
Main Authors: James R. Wright M.D., Ph.D., Bill Pohajdak
Format: Article
Language:English
Published: SAGE Publishing 2001-03-01
Series:Cell Transplantation
Online Access:https://doi.org/10.3727/000000001783986864
Description
Summary:The islet tissue, called Brockmann bodies, in certain teleost fish is anatomically distinct from the pancreatic exocrine tissue and can be easily identified macroscopically. Expensive islet isolation procedures, such as required when procuring islet tissue from mammalian pancreases, are unnecessary. Tilapia islets transplanted into diabetic athymic nude mice will produce long-term normoglycemia and mammalian-like glucose tolerance profiles. Encapsulated tilapia islets function well after transplantation into euthymic recipients. Additionally, tilapia are potentially ideal xenogeneic donors because of markedly lower donor production costs, minimal islet procurement costs, and possibly decreased xenozoonotic potential relative to mammalian donors. Tilapia islets appear to be appropriately glucose responsive with high insulin output, can be cryopreserved, and are much more resistant to hypoxia than mammalian islets. Because tilapia and human insulin differ by 17 amino acids, we have cloned, sequenced, and modified the tilapia insulin gene by site-directed mutagenesis resulting in a tilapia insulin gene that codes for “humanized” insulin while still maintaining all of the tilapia regulatory (noncoding) sequences. We have now produced small numbers of founder transgenic tilapia with incorporation of our humanized tilapia insulin gene construct, and we have shown transmission and expression of the transgene in the beta cells and serum of their F1 offspring. Our ultimate goal is to achieve homologous recombination and to breed for homozygosity for the hybrid insulin gene. Subsequent generations of transgenic tilapia will undergo a program of genomic optimization selecting for growth, survival, and fecundity as well as stability of the transgene. Islets from the resulting transgenic fish, after extensive characterization, could be harvested, encapsulated, and then transplanted into diabetic patients.
ISSN:0963-6897
1555-3892