Existence and Ulam–Hyers stability of coupled sequential fractional differential equations with integral boundary conditions

Abstract We study the existence and uniqueness of solutions for coupled sequential fractional differential equations involving Caputo fractional derivative of order 1<α≤2 $1<\alpha \leq 2$ with integral boundary conditions. Moreover, we discuss Ulam–Hyers stability for the problem at hand....

Full description

Bibliographic Details
Main Authors: Nazim I. Mahmudov, Areen Al-Khateeb
Format: Article
Language:English
Published: SpringerOpen 2019-06-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-019-2115-6
_version_ 1818885291648221184
author Nazim I. Mahmudov
Areen Al-Khateeb
author_facet Nazim I. Mahmudov
Areen Al-Khateeb
author_sort Nazim I. Mahmudov
collection DOAJ
description Abstract We study the existence and uniqueness of solutions for coupled sequential fractional differential equations involving Caputo fractional derivative of order 1<α≤2 $1<\alpha \leq 2$ with integral boundary conditions. Moreover, we discuss Ulam–Hyers stability for the problem at hand.
first_indexed 2024-12-19T16:03:07Z
format Article
id doaj.art-33f631a74deb4593b1a6f0cd778e639c
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-19T16:03:07Z
publishDate 2019-06-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-33f631a74deb4593b1a6f0cd778e639c2022-12-21T20:14:53ZengSpringerOpenJournal of Inequalities and Applications1029-242X2019-06-012019111510.1186/s13660-019-2115-6Existence and Ulam–Hyers stability of coupled sequential fractional differential equations with integral boundary conditionsNazim I. Mahmudov0Areen Al-Khateeb1Department of Mathematics, Eastern Mediterranean UniversityDepartment of Mathematics, Eastern Mediterranean UniversityAbstract We study the existence and uniqueness of solutions for coupled sequential fractional differential equations involving Caputo fractional derivative of order 1<α≤2 $1<\alpha \leq 2$ with integral boundary conditions. Moreover, we discuss Ulam–Hyers stability for the problem at hand.http://link.springer.com/article/10.1186/s13660-019-2115-6Fractional differential equationsMixed boundary value problemFixed point theorem
spellingShingle Nazim I. Mahmudov
Areen Al-Khateeb
Existence and Ulam–Hyers stability of coupled sequential fractional differential equations with integral boundary conditions
Journal of Inequalities and Applications
Fractional differential equations
Mixed boundary value problem
Fixed point theorem
title Existence and Ulam–Hyers stability of coupled sequential fractional differential equations with integral boundary conditions
title_full Existence and Ulam–Hyers stability of coupled sequential fractional differential equations with integral boundary conditions
title_fullStr Existence and Ulam–Hyers stability of coupled sequential fractional differential equations with integral boundary conditions
title_full_unstemmed Existence and Ulam–Hyers stability of coupled sequential fractional differential equations with integral boundary conditions
title_short Existence and Ulam–Hyers stability of coupled sequential fractional differential equations with integral boundary conditions
title_sort existence and ulam hyers stability of coupled sequential fractional differential equations with integral boundary conditions
topic Fractional differential equations
Mixed boundary value problem
Fixed point theorem
url http://link.springer.com/article/10.1186/s13660-019-2115-6
work_keys_str_mv AT nazimimahmudov existenceandulamhyersstabilityofcoupledsequentialfractionaldifferentialequationswithintegralboundaryconditions
AT areenalkhateeb existenceandulamhyersstabilityofcoupledsequentialfractionaldifferentialequationswithintegralboundaryconditions