Counting Traversing Hamiltonian Cycles in Tiled Graphs

Recently, the problem of counting Hamiltonian cycles in 2-tiled graphs was resolved by Vegi Kalamar, Bokal, and Žerak. In this paper, we continue our research on generalized tiled graphs. We extend algorithms on counting traversing Hamiltonian cycles from 2-tiled graphs to generalized tiled graphs....

Full description

Bibliographic Details
Main Author: Alen Vegi Kalamar
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/12/2650
Description
Summary:Recently, the problem of counting Hamiltonian cycles in 2-tiled graphs was resolved by Vegi Kalamar, Bokal, and Žerak. In this paper, we continue our research on generalized tiled graphs. We extend algorithms on counting traversing Hamiltonian cycles from 2-tiled graphs to generalized tiled graphs. We further show that, similarly as for 2-tiled graphs, for a fixed finite set of tiles, counting traversing Hamiltonian cycles can be performed in linear time with respect to the size of such graph, implying that counting traversing Hamiltonian cycles in tiled graphs is fixed-parameter tractable.
ISSN:2227-7390