Extracellular non-coding RNA signatures of the metacestode stage of Echinococcus multilocularis.
Extracellular RNAs (ex-RNAs) are secreted by cells through different means that may involve association with proteins, lipoproteins or extracellular vesicles (EV). In the context of parasitism, ex-RNAs represent new and exciting communication intermediaries with promising potential as novel biomarke...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2020-11-01
|
Series: | PLoS Neglected Tropical Diseases |
Online Access: | https://doi.org/10.1371/journal.pntd.0008890 |
Summary: | Extracellular RNAs (ex-RNAs) are secreted by cells through different means that may involve association with proteins, lipoproteins or extracellular vesicles (EV). In the context of parasitism, ex-RNAs represent new and exciting communication intermediaries with promising potential as novel biomarkers. In the last years, it was shown that helminth parasites secrete ex-RNAs, however, most work mainly focused on RNA secretion mediated by EV. Ex-RNA study is of special interest in those helminth infections that still lack biomarkers for early and/or follow-up diagnosis, such as echinococcosis, a neglected zoonotic disease caused by cestodes of the genus Echinococcus. In this work, we have characterised the ex-RNA profile secreted by in vitro grown metacestodes of Echinococcus multilocularis, the casuative agent of alveolar echinococcosis. We have used high throughput RNA-sequencing together with RT-qPCR to characterise the ex-RNA profile secreted towards the extra- and intra-parasite milieus in EV-enriched and EV-depleted fractions. We show that a polarized secretion of small RNAs takes place, with microRNAs mainly secreted to the extra-parasite milieu and rRNA- and tRNA-derived sequences mostly secreted to the intra-parasite milieu. In addition, we show by nanoparticle tracking analyses that viable metacestodes secrete EV mainly into the metacestode inner vesicular fluid (MVF); however, the number of nanoparticles in culture medium and MVF increases > 10-fold when metacestodes show signs of tegument impairment. Interestingly, we confirm the presence of host miRNAs in the intra-parasite milieu, implying their internalization and transport through the tegument towards the MVF. Finally, our assessment of the detection of Echinococcus miRNAs in patient samples by RT-qPCR yielded negative results suggesting the tested miRNAs may not be good biomarkers for this disease. A comprehensive study of the secretion mechanisms throughout the life cycle of these parasites will help to understand parasite interaction with the host and also, improve current diagnostic tools. |
---|---|
ISSN: | 1935-2727 1935-2735 |