Assessing the Connectivity of Riparian Forests across a Gradient of Human Disturbance: The Potential of Copernicus “Riparian Zones” in Two Hydroregions

The connectivity of riparian forests can be used as a proxy for the capacity of riparian zones to provide ecological functions, goods and services. In this study, we aim to test the potential of the freely available Copernicus “Riparian Zones” dataset to characterize the connectivity of riparian for...

Full description

Bibliographic Details
Main Authors: André Fonseca, Jean-Philippe Ugille, Adrien Michez, Patricia María Rodríguez-González, Gonçalo Duarte, Maria Teresa Ferreira, Maria Rosário Fernandes
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Forests
Subjects:
Online Access:https://www.mdpi.com/1999-4907/12/6/674
Description
Summary:The connectivity of riparian forests can be used as a proxy for the capacity of riparian zones to provide ecological functions, goods and services. In this study, we aim to test the potential of the freely available Copernicus “Riparian Zones” dataset to characterize the connectivity of riparian forests located in two European bioclimatic regions—the Mediterranean and the Central Baltic hydroregions—when subject to a gradient of human disturbance characterized by land-use/land-cover and hydromorphological pressures. We extracted riparian patches using the Copernicus “Actual Riparian Zone” (ARZ) layer and calculated connectivity using the Integral Index of Connectivity (IIC). We then compared the results with a “Manual Riparian Zone” (MRZ) layer, produced by manually digitizing riparian vegetation patches over a very high-resolution World Imagery layer. Our research evidenced reduced forest connectivity in both hydroregions, with the exception of Least Disturbed sites in the Central Baltic hydroregion. The ARZ layer exhibited overall suitability to assess the connectivity of riparian forests in the Central Baltic hydroregion, while the Mediterranean hydroregion displayed a consistent pattern of connectivity overestimation in all levels of human disturbance. To address this, we recommend some improvements in the spatial resolution and thematic accuracy of the Copernicus ARZ layer.
ISSN:1999-4907