A Communication-Free Decentralized Control for Grid-Connected Cascaded PV Inverters

This paper proposes a communication-free decentralized control for grid-connected cascaded PV inverter systems. The cascaded PV inverter system is an AC-stacked architecture, which promotes the integration of low voltage (LV) distributed photovoltaic (PV) generators into the medium/high voltage (MV/...

Full description

Bibliographic Details
Main Authors: Mei Su, Chao Luo, Xiaochao Hou, Wenbin Yuan, Zhangjie Liu, Hua Han, Josep M. Guerrero
Format: Article
Language:English
Published: MDPI AG 2018-05-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/11/6/1375
Description
Summary:This paper proposes a communication-free decentralized control for grid-connected cascaded PV inverter systems. The cascaded PV inverter system is an AC-stacked architecture, which promotes the integration of low voltage (LV) distributed photovoltaic (PV) generators into the medium/high voltage (MV/HV) power grid. The proposed decentralized control is fully free of communication links and phase-locked loop (PLL). All cascaded inverters are controlled as current controlled voltage sources locally and independently to achieve maximum power point tracking (MPPT) and frequency self-synchronization with the power grid. As a result, control complexity as well as communication costs are reduced, and the system’s reliability is greatly enhanced compared with existing communication-based methods. System stability and dynamic performance are evaluated by small-signal analysis to guide the design of system parameters. The feasibility and effectiveness of the proposed solution are verified by simulation tests.
ISSN:1996-1073