Revolatilisation of soil-accumulated pollutants triggered by the summer monsoon in India
<p>Persistent organic pollutants that have accumulated in soils can be remobilised by volatilisation in response to chemical equilibrium with the atmosphere. Clean air masses from the Indian Ocean, advected with the onset of the summer monsoon, are found to reduce concentrations of hexachl...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-08-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/18/11031/2018/acp-18-11031-2018.pdf |
Summary: | <p>Persistent organic pollutants that have accumulated in soils can be
remobilised by volatilisation in response to chemical equilibrium with the
atmosphere. Clean air masses from the Indian Ocean, advected with the onset
of the summer monsoon, are found to reduce concentrations of
hexachlorocyclohexane (HCH), dichlorodiphenyltrichloroethane (DDT) and its
derivatives, endosulfan and polychlorinated biphenyls (PCBs) in air at a
mountain site (all in the range 5–20 pg m<sup>−3</sup>) by 77 %, 70 %, 82 % and 45 %,
respectively. The analysis of fugacities in soil and air suggest that the
arrival of summer monsoon triggers net volatilisation or enhances ongoing
revolatilisation of the now-banned chemicals HCH and PCBs from
background soils in southern India. The response of the air–soil exchange was
modelled using a regional air pollution model, WRF-Chem PAH/POP. The results
suggest that the air is increasingly polluted during transport by the
south-westerly monsoon winds across the subcontinent. Using a multidecadal
multimedia mass balance model, it is found that air–surface exchange of HCH
and DDT have declined since the ban of these substances from agriculture, but
remobilisation of higher chlorinated PCBs may have reached a historical
high, 40 years after peak emission.</p> |
---|---|
ISSN: | 1680-7316 1680-7324 |