SCFT/VOA correspondence via Ω-deformation
Abstract We investigate an alternative approach to the correspondence of four dimensional N $$ \mathcal{N} $$ = 2 superconformal theories and two-dimensional vertex operator algebras, in the framework of the Ω-deformation of supersymmetric gauge theories. The twodimensional Ω-deformation of the ho...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-10-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP10(2019)171 |
_version_ | 1819046183826358272 |
---|---|
author | Saebyeok Jeong |
author_facet | Saebyeok Jeong |
author_sort | Saebyeok Jeong |
collection | DOAJ |
description | Abstract We investigate an alternative approach to the correspondence of four dimensional N $$ \mathcal{N} $$ = 2 superconformal theories and two-dimensional vertex operator algebras, in the framework of the Ω-deformation of supersymmetric gauge theories. The twodimensional Ω-deformation of the holomorphic-topological theory on the product four manifold is constructed at the level of supersymmetry variations and the action. The supersymmetric localization is performed to achieve a two-dimensional chiral CFT. The desired vertex operator algebra is recovered as the algebra of local operators of the resulting CFT. We also discuss the identification of the Schur index of the N $$ \mathcal{N} $$ = 2 superconformal theory and the vacuum character of the vertex operator algebra at the level of their path integral representations, using our Ω-deformation point of view on the correspondence. |
first_indexed | 2024-12-21T10:40:25Z |
format | Article |
id | doaj.art-341d45ff89cc42feb0a169ed11b2db9b |
institution | Directory Open Access Journal |
issn | 1029-8479 |
language | English |
last_indexed | 2024-12-21T10:40:25Z |
publishDate | 2019-10-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of High Energy Physics |
spelling | doaj.art-341d45ff89cc42feb0a169ed11b2db9b2022-12-21T19:06:57ZengSpringerOpenJournal of High Energy Physics1029-84792019-10-0120191012310.1007/JHEP10(2019)171SCFT/VOA correspondence via Ω-deformationSaebyeok Jeong0C.N. Yang Institute for Theoretical Physics, Stony Brook UniversityAbstract We investigate an alternative approach to the correspondence of four dimensional N $$ \mathcal{N} $$ = 2 superconformal theories and two-dimensional vertex operator algebras, in the framework of the Ω-deformation of supersymmetric gauge theories. The twodimensional Ω-deformation of the holomorphic-topological theory on the product four manifold is constructed at the level of supersymmetry variations and the action. The supersymmetric localization is performed to achieve a two-dimensional chiral CFT. The desired vertex operator algebra is recovered as the algebra of local operators of the resulting CFT. We also discuss the identification of the Schur index of the N $$ \mathcal{N} $$ = 2 superconformal theory and the vacuum character of the vertex operator algebra at the level of their path integral representations, using our Ω-deformation point of view on the correspondence.http://link.springer.com/article/10.1007/JHEP10(2019)171Conformal and W SymmetryConformal Field TheoryExtended SupersymmetrySupersymmetric Gauge Theory |
spellingShingle | Saebyeok Jeong SCFT/VOA correspondence via Ω-deformation Journal of High Energy Physics Conformal and W Symmetry Conformal Field Theory Extended Supersymmetry Supersymmetric Gauge Theory |
title | SCFT/VOA correspondence via Ω-deformation |
title_full | SCFT/VOA correspondence via Ω-deformation |
title_fullStr | SCFT/VOA correspondence via Ω-deformation |
title_full_unstemmed | SCFT/VOA correspondence via Ω-deformation |
title_short | SCFT/VOA correspondence via Ω-deformation |
title_sort | scft voa correspondence via ω deformation |
topic | Conformal and W Symmetry Conformal Field Theory Extended Supersymmetry Supersymmetric Gauge Theory |
url | http://link.springer.com/article/10.1007/JHEP10(2019)171 |
work_keys_str_mv | AT saebyeokjeong scftvoacorrespondenceviaōdeformation |