An unsupervised approach for the detection of zero‐day distributed denial of service attacks in Internet of Things networks
Abstract The authors introduce an unsupervised Intrusion Detection System designed to detect zero‐day distributed denial of service (DDoS) attacks in Internet of Things (IoT) networks. This system can identify anomalies without needing prior knowledge or training on attack information. Zero‐day atta...
المؤلفون الرئيسيون: | Monika Roopak, Simon Parkinson, Gui Yun Tian, Yachao Ran, Saad Khan, Balasubramaniyan Chandrasekaran |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Wiley
2024-09-01
|
سلاسل: | IET Networks |
الموضوعات: | |
الوصول للمادة أونلاين: | https://doi.org/10.1049/ntw2.12134 |
مواد مشابهة
-
Channel state information based physical layer authentication for Wi‐Fi sensing systems using deep learning in Internet of things networks
حسب: Monika Roopak, وآخرون
منشور في: (2024-12-01) -
Intelligent Unsupervised Network Traffic Classification Method Using Adversarial Training and Deep Clustering for Secure Internet of Things
حسب: Weijie Zhang, وآخرون
منشور في: (2023-09-01) -
Refined LSTM Based Intrusion Detection for Denial-of-Service Attack in Internet of Things
حسب: Kuburat Oyeranti Adefemi Alimi, وآخرون
منشور في: (2022-07-01) -
Distributed Denial of Service Attacks Detection in Internet of Things Using the Majority Voting Approach
حسب: Habibollah Mazarei, وآخرون
منشور في: (2024-02-01) -
Deep learning in distributed denial-of-service attacks detection method for Internet of Things networks
حسب: Aswad Firas Mohammed, وآخرون
منشور في: (2023-01-01)