An unsupervised approach for the detection of zero‐day distributed denial of service attacks in Internet of Things networks
Abstract The authors introduce an unsupervised Intrusion Detection System designed to detect zero‐day distributed denial of service (DDoS) attacks in Internet of Things (IoT) networks. This system can identify anomalies without needing prior knowledge or training on attack information. Zero‐day atta...
Auteurs principaux: | Monika Roopak, Simon Parkinson, Gui Yun Tian, Yachao Ran, Saad Khan, Balasubramaniyan Chandrasekaran |
---|---|
Format: | Article |
Langue: | English |
Publié: |
Wiley
2024-09-01
|
Collection: | IET Networks |
Sujets: | |
Accès en ligne: | https://doi.org/10.1049/ntw2.12134 |
Documents similaires
-
Channel state information based physical layer authentication for Wi‐Fi sensing systems using deep learning in Internet of things networks
par: Monika Roopak, et autres
Publié: (2024-12-01) -
Intelligent Unsupervised Network Traffic Classification Method Using Adversarial Training and Deep Clustering for Secure Internet of Things
par: Weijie Zhang, et autres
Publié: (2023-09-01) -
Refined LSTM Based Intrusion Detection for Denial-of-Service Attack in Internet of Things
par: Kuburat Oyeranti Adefemi Alimi, et autres
Publié: (2022-07-01) -
Distributed Denial of Service Attacks Detection in Internet of Things Using the Majority Voting Approach
par: Habibollah Mazarei, et autres
Publié: (2024-02-01) -
Deep learning in distributed denial-of-service attacks detection method for Internet of Things networks
par: Aswad Firas Mohammed, et autres
Publié: (2023-01-01)