An unsupervised approach for the detection of zero‐day distributed denial of service attacks in Internet of Things networks
Abstract The authors introduce an unsupervised Intrusion Detection System designed to detect zero‐day distributed denial of service (DDoS) attacks in Internet of Things (IoT) networks. This system can identify anomalies without needing prior knowledge or training on attack information. Zero‐day atta...
Main Authors: | Monika Roopak, Simon Parkinson, Gui Yun Tian, Yachao Ran, Saad Khan, Balasubramaniyan Chandrasekaran |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
Wiley
2024-09-01
|
סדרה: | IET Networks |
נושאים: | |
גישה מקוונת: | https://doi.org/10.1049/ntw2.12134 |
פריטים דומים
-
Channel state information based physical layer authentication for Wi‐Fi sensing systems using deep learning in Internet of things networks
מאת: Monika Roopak, et al.
יצא לאור: (2024-12-01) -
Intelligent Unsupervised Network Traffic Classification Method Using Adversarial Training and Deep Clustering for Secure Internet of Things
מאת: Weijie Zhang, et al.
יצא לאור: (2023-09-01) -
Refined LSTM Based Intrusion Detection for Denial-of-Service Attack in Internet of Things
מאת: Kuburat Oyeranti Adefemi Alimi, et al.
יצא לאור: (2022-07-01) -
Distributed Denial of Service Attacks Detection in Internet of Things Using the Majority Voting Approach
מאת: Habibollah Mazarei, et al.
יצא לאור: (2024-02-01) -
Deep learning in distributed denial-of-service attacks detection method for Internet of Things networks
מאת: Aswad Firas Mohammed, et al.
יצא לאור: (2023-01-01)