An unsupervised approach for the detection of zero‐day distributed denial of service attacks in Internet of Things networks
Abstract The authors introduce an unsupervised Intrusion Detection System designed to detect zero‐day distributed denial of service (DDoS) attacks in Internet of Things (IoT) networks. This system can identify anomalies without needing prior knowledge or training on attack information. Zero‐day atta...
Үндсэн зохиолчид: | Monika Roopak, Simon Parkinson, Gui Yun Tian, Yachao Ran, Saad Khan, Balasubramaniyan Chandrasekaran |
---|---|
Формат: | Өгүүллэг |
Хэл сонгох: | English |
Хэвлэсэн: |
Wiley
2024-09-01
|
Цуврал: | IET Networks |
Нөхцлүүд: | |
Онлайн хандалт: | https://doi.org/10.1049/ntw2.12134 |
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Channel state information based physical layer authentication for Wi‐Fi sensing systems using deep learning in Internet of things networks
-н: Monika Roopak, зэрэг
Хэвлэсэн: (2024-12-01) -
Intelligent Unsupervised Network Traffic Classification Method Using Adversarial Training and Deep Clustering for Secure Internet of Things
-н: Weijie Zhang, зэрэг
Хэвлэсэн: (2023-09-01) -
Refined LSTM Based Intrusion Detection for Denial-of-Service Attack in Internet of Things
-н: Kuburat Oyeranti Adefemi Alimi, зэрэг
Хэвлэсэн: (2022-07-01) -
Distributed Denial of Service Attacks Detection in Internet of Things Using the Majority Voting Approach
-н: Habibollah Mazarei, зэрэг
Хэвлэсэн: (2024-02-01) -
Deep learning in distributed denial-of-service attacks detection method for Internet of Things networks
-н: Aswad Firas Mohammed, зэрэг
Хэвлэсэн: (2023-01-01)