An unsupervised approach for the detection of zero‐day distributed denial of service attacks in Internet of Things networks
Abstract The authors introduce an unsupervised Intrusion Detection System designed to detect zero‐day distributed denial of service (DDoS) attacks in Internet of Things (IoT) networks. This system can identify anomalies without needing prior knowledge or training on attack information. Zero‐day atta...
Автори: | Monika Roopak, Simon Parkinson, Gui Yun Tian, Yachao Ran, Saad Khan, Balasubramaniyan Chandrasekaran |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Wiley
2024-09-01
|
Серія: | IET Networks |
Предмети: | |
Онлайн доступ: | https://doi.org/10.1049/ntw2.12134 |
Схожі ресурси
-
Channel state information based physical layer authentication for Wi‐Fi sensing systems using deep learning in Internet of things networks
за авторством: Monika Roopak, та інші
Опубліковано: (2024-12-01) -
Intelligent Unsupervised Network Traffic Classification Method Using Adversarial Training and Deep Clustering for Secure Internet of Things
за авторством: Weijie Zhang, та інші
Опубліковано: (2023-09-01) -
Refined LSTM Based Intrusion Detection for Denial-of-Service Attack in Internet of Things
за авторством: Kuburat Oyeranti Adefemi Alimi, та інші
Опубліковано: (2022-07-01) -
Distributed Denial of Service Attacks Detection in Internet of Things Using the Majority Voting Approach
за авторством: Habibollah Mazarei, та інші
Опубліковано: (2024-02-01) -
Deep learning in distributed denial-of-service attacks detection method for Internet of Things networks
за авторством: Aswad Firas Mohammed, та інші
Опубліковано: (2023-01-01)