An unsupervised approach for the detection of zero‐day distributed denial of service attacks in Internet of Things networks
Abstract The authors introduce an unsupervised Intrusion Detection System designed to detect zero‐day distributed denial of service (DDoS) attacks in Internet of Things (IoT) networks. This system can identify anomalies without needing prior knowledge or training on attack information. Zero‐day atta...
Những tác giả chính: | Monika Roopak, Simon Parkinson, Gui Yun Tian, Yachao Ran, Saad Khan, Balasubramaniyan Chandrasekaran |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
Wiley
2024-09-01
|
Loạt: | IET Networks |
Những chủ đề: | |
Truy cập trực tuyến: | https://doi.org/10.1049/ntw2.12134 |
Những quyển sách tương tự
-
Channel state information based physical layer authentication for Wi‐Fi sensing systems using deep learning in Internet of things networks
Bằng: Monika Roopak, et al.
Được phát hành: (2024-12-01) -
Intelligent Unsupervised Network Traffic Classification Method Using Adversarial Training and Deep Clustering for Secure Internet of Things
Bằng: Weijie Zhang, et al.
Được phát hành: (2023-09-01) -
Refined LSTM Based Intrusion Detection for Denial-of-Service Attack in Internet of Things
Bằng: Kuburat Oyeranti Adefemi Alimi, et al.
Được phát hành: (2022-07-01) -
Distributed Denial of Service Attacks Detection in Internet of Things Using the Majority Voting Approach
Bằng: Habibollah Mazarei, et al.
Được phát hành: (2024-02-01) -
Deep learning in distributed denial-of-service attacks detection method for Internet of Things networks
Bằng: Aswad Firas Mohammed, et al.
Được phát hành: (2023-01-01)