Khuri–Treiman equations for $$\pi \pi $$ ππ scattering

Abstract The Khuri–Treiman formalism models the partial-wave expansion of a scattering amplitude as a sum of three individual truncated series, capturing the low-energy dynamics of the direct and cross channels. We cast this formalism into dispersive equations to study $$\pi \pi $$ ππ scattering, an...

Full description

Bibliographic Details
Main Authors: M. Albaladejo, N. Sherrill, C. Fernández-Ramírez, A. Jackura, V. Mathieu, M. Mikhasenko, J. Nys, A. Pilloni, A. P. Szczepaniak, Joint Physics Analysis Center
Format: Article
Language:English
Published: SpringerOpen 2018-07-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-018-6045-0
_version_ 1819071039524569088
author M. Albaladejo
N. Sherrill
C. Fernández-Ramírez
A. Jackura
V. Mathieu
M. Mikhasenko
J. Nys
A. Pilloni
A. P. Szczepaniak
Joint Physics Analysis Center
author_facet M. Albaladejo
N. Sherrill
C. Fernández-Ramírez
A. Jackura
V. Mathieu
M. Mikhasenko
J. Nys
A. Pilloni
A. P. Szczepaniak
Joint Physics Analysis Center
author_sort M. Albaladejo
collection DOAJ
description Abstract The Khuri–Treiman formalism models the partial-wave expansion of a scattering amplitude as a sum of three individual truncated series, capturing the low-energy dynamics of the direct and cross channels. We cast this formalism into dispersive equations to study $$\pi \pi $$ ππ scattering, and compare their expressions and numerical output to the Roy and GKPY equations. We prove that the Khuri–Treiman equations and Roy equations coincide when both are truncated to include only S- and P-waves. When higher partial waves are included, we find an excellent agreement between the Khuri–Treiman and the GKPY results. This lends credence to the notion that the Khuri–Treiman formalism is a reliable low-energy tool for studying hadronic reaction amplitudes.
first_indexed 2024-12-21T17:15:30Z
format Article
id doaj.art-341f7e5d5de6459487581077ef02e0e2
institution Directory Open Access Journal
issn 1434-6044
1434-6052
language English
last_indexed 2024-12-21T17:15:30Z
publishDate 2018-07-01
publisher SpringerOpen
record_format Article
series European Physical Journal C: Particles and Fields
spelling doaj.art-341f7e5d5de6459487581077ef02e0e22022-12-21T18:56:17ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522018-07-0178711410.1140/epjc/s10052-018-6045-0Khuri–Treiman equations for $$\pi \pi $$ ππ scatteringM. Albaladejo0N. Sherrill1C. Fernández-Ramírez2A. Jackura3V. Mathieu4M. Mikhasenko5J. Nys6A. Pilloni7A. P. Szczepaniak8Joint Physics Analysis CenterDepartamento de Física, Universidad de MurciaCenter for Exploration of Energy and Matter, Indiana UniversityInstituto de Ciencias Nucleares, Universidad Nacional Autónoma de MéxicoCenter for Exploration of Energy and Matter, Indiana UniversityTheory Center, Thomas Jefferson National Accelerator FacilityHelmholtz-Institut für Strahlen- und Kernphysik, Universität BonnCenter for Exploration of Energy and Matter, Indiana UniversityTheory Center, Thomas Jefferson National Accelerator FacilityCenter for Exploration of Energy and Matter, Indiana UniversityAbstract The Khuri–Treiman formalism models the partial-wave expansion of a scattering amplitude as a sum of three individual truncated series, capturing the low-energy dynamics of the direct and cross channels. We cast this formalism into dispersive equations to study $$\pi \pi $$ ππ scattering, and compare their expressions and numerical output to the Roy and GKPY equations. We prove that the Khuri–Treiman equations and Roy equations coincide when both are truncated to include only S- and P-waves. When higher partial waves are included, we find an excellent agreement between the Khuri–Treiman and the GKPY results. This lends credence to the notion that the Khuri–Treiman formalism is a reliable low-energy tool for studying hadronic reaction amplitudes.http://link.springer.com/article/10.1140/epjc/s10052-018-6045-0
spellingShingle M. Albaladejo
N. Sherrill
C. Fernández-Ramírez
A. Jackura
V. Mathieu
M. Mikhasenko
J. Nys
A. Pilloni
A. P. Szczepaniak
Joint Physics Analysis Center
Khuri–Treiman equations for $$\pi \pi $$ ππ scattering
European Physical Journal C: Particles and Fields
title Khuri–Treiman equations for $$\pi \pi $$ ππ scattering
title_full Khuri–Treiman equations for $$\pi \pi $$ ππ scattering
title_fullStr Khuri–Treiman equations for $$\pi \pi $$ ππ scattering
title_full_unstemmed Khuri–Treiman equations for $$\pi \pi $$ ππ scattering
title_short Khuri–Treiman equations for $$\pi \pi $$ ππ scattering
title_sort khuri treiman equations for pi pi ππ scattering
url http://link.springer.com/article/10.1140/epjc/s10052-018-6045-0
work_keys_str_mv AT malbaladejo khuritreimanequationsforpipippscattering
AT nsherrill khuritreimanequationsforpipippscattering
AT cfernandezramirez khuritreimanequationsforpipippscattering
AT ajackura khuritreimanequationsforpipippscattering
AT vmathieu khuritreimanequationsforpipippscattering
AT mmikhasenko khuritreimanequationsforpipippscattering
AT jnys khuritreimanequationsforpipippscattering
AT apilloni khuritreimanequationsforpipippscattering
AT apszczepaniak khuritreimanequationsforpipippscattering
AT jointphysicsanalysiscenter khuritreimanequationsforpipippscattering